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Abstract

Semiconductors with an additional intermediate band (IB) have the potential to greatly improve
solar cell efficiency. Their theoretical efficiency limit is over 50% higher than that of standard semi-
conductor solar cells at full concentration. In practice however, their efficiencies are low compared
to this detailed balance limit. Part of the reason is that it has not been possible to optimize IB
device geometry because no device model has existed that could capture all the effects present in
IB materials (e.g., charge transport inside the IB and self-consistent optics). In this thesis I intro-
duce my new device model for intermediate band semiconductors called Simudo. The software uses
the finite element method to solve the coupled Poisson/drift-diffusion (PDD) system of equations
that describe the carrier dynamics inside semiconductor (IB or not) devices, along with optical
propagation. I benchmark its accuracy on standard semiconductor problems against Synopsys
Sentaurus, and I find that not only does it give valid results but in fact converges to the solution
with a smaller number of mesh points by having quartic rather than merely quadratic solution
convergence with respect to the number of mesh points. I also demonstrate Simudo’s immediate
usefulness by answering the question of whether IB mobility can compensate for mismatched op-
tical absorption processes in different regions of the device. The device model work is preceded
by three introductory chapters bringing the reader up to speed on semiconductor device physics
and providing them with a primer on the finite element method. The coupled PDD equations
are numerically challenging to solve, and the road to development of Simudo tried a number of
formulations of the problem that were not successful. In the final chapter I discuss some of these
formulations and why they did not succeed.
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Table 2: Common symbols used in this thesis, adapted from [1].
Symbol Definition

uk Carrier density in semiconductor band k
Ek Band edge energy of band k; central energy of IB k
Et Energy level of SRH trap
sk Sign of carriers in band k (+ for VB, − for CB)
wk Quasi-Fermi level (“imref”) of carriers in band k
j⃗k Current density in band k
µk Mobility of carriers in band k
Dk Diffusion coefficient of carriers in band k
Sk Surface recombination velocity of carriers in band k

Nk
Effective density of states for nondegenerate band k
Integrated density of states for intermediate band k

NA Acceptor doping concentration
ND Donor doping concentration
fk Filling fraction fk = uk/Nk of IB k
fA Filling fraction of acceptor dopant
fD Filling fraction of donor dopant
fk,± (1− fk) for positive sign and fk for negative sign
fk,0 Charge neutral filling fraction of IB k
gk Net generation in band k due to all generation and recombination

processes
T Temperature
β Equal to 1/(kBT ), β is commonly known as the thermal energy

scale
kB Boltzmann constant
q Elementary charge

ϕ, E⃗, ρ, ε Electrostatic potential, electric field, charge density, and permittiv-
ity

αfi,λ Optical absorption coefficient from band i to f at vacuum wave-
length λ

σopt
fi Optical cross section from band i to f

Φλ,ŝ Photon spectral flux density at wavelength lambda in direction ŝ
Φ[λ1,λ2],ŝ Photon flux in direction ŝ from λ1 to λ2, i.e.,

´ λ2

λ1
Φλ,ŝ dλ

n̂ Surface normal vector
ŝ Direction of light propagation
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Chapter 1

Introduction

1.1 Context

Free energy means you can do anything. Cheaper renewable energy means you can still do a lot
of things. One of them is addressing the modern climate crisis. For example, given sufficiently
cheap and abundant energy production, CO2 can be directly captured from the atmosphere. One
strong contender for renewable energy generation is solar power via photovoltaic (PV) technologies.
Although the PV market is booming now, standard cells have efficiencies limited by a fundamental
thermodynamic limit called the Shockley-Queisser (SQ) or “detailed balance” limit [4]. The SQ
limit is very general and only makes a few assumptions:

1. There is no nonradiative recombination;

2. All generated carriers either get collected at the contacts or recombine radiatively (emitting
a photon with energy Eg);

3. An absorbed photon with energy hν > Eg produces one carrier with energy Eg; and

4. Infinite carrier mobility (i.e., the quasi-Fermi levels are flat).

The SQ limit restricts standard solar cell efficiency to 33.7% for normal illumination [4], and
40.7% under full concentration1 with a back reflector2 [4, 5]. It would be better to generate more
electricity from the same area on the ground. Several methods exist to break the SQ limit (by
breaking one of the assumptions of the SQ limit). One exists as a real product (multijunction
solar cells) and the rest are research activities[6]. In this thesis, we focus on an approach called
intermediate band solar cells (IBSC).

1Full concentration means sunlight is concentrated onto the solar cell to the maximum extent allowable by optics
and conservation of étendue.

2Mirror at the back of the device.
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IBSCs have the potential to overcome the SQ limit by breaking the third assumption: the
material can absorb two photons with energy less than Eg (which were previously not absorbed
at all) and produce a single mobile carrier with energy Eg. Adding an intermediate band (IB)
between the conduction and valence bands was first suggested in [7]. The idea languished in
relative obscurity for about three decades until renewed interest in silicon sensitization to deeper
infrared appeared [8]. This led [9] to recalculate the SQ limit for IB devices, calculating the
fundamental Luque-Martí thermodynamic limit for IBSC as 42% under normal illumination [10]
and 63.7% under full concentration with back reflector [9]. Physical realizations of IB materials
include highly mismatched alloys [11, 12], quantum dots [13, 14], and bulk standard semiconductors
with deep-level impurities [15, 16]. Although the IB effect (two photon non-resonant absorption
giving photocurrent) has been observed, device efficiencies are unfortunately still low [17, 18]
relative to the theoretical detailed balance efficiencies. What gives?

Contrary to the detailed balance assumptions, the reality of current IBSC devices is less than
ideal. The non-ideal features can be roughly categorized as either material or device design is-
sues. IB materials are not abundant: there are no known naturally occurring intermediate band
materials, so they are all engineered materials. For an IB material to be appropriate for use in an
IBSC, both sub-bandgap optical absorption processes must be strong, the carrier lifetimes must be
sufficiently long, carrier mobility must be sufficiently large, and the semiconductor bandgap and
the energy level of the IB must have values that are well matched to the sunlight spectrum [17].
In quantum dot systems, absorption can be increased by increasing dot density [19, 20, 21, 22]. To
the extent that carrier lifetimes are determined by material defects, they can be improved. But if
the IB is the fundamental cause of the short carrier lifetime [23], those IB materials may not be
capable of making good IBSCs. The junctions between IB materials and standard semiconductors
also need to be engineered to be high quality, allowing the free flow of electrons and holes but no
conduction from the IB itself [11].

Most of the IBSC requirements of a material are encoded in the IB figure of merit

ν =
kBT

q
min

i
(µiτi)min

i
(αi)

2 (1.1)

which can quickly predict whether an IB material is promising or not [23, 24, 25] given the material’s
conduction and valence band mobilities µC and µV , carrier lifetimes τC and τV , sub-bandgap
absorptivities αIV and αCI , thermal energy kBT , and elementary charge q.3

3There are actually two figures of merit, depending on whether transport inside the IB material is drift- or
diffusion-dominated (which is a question about device design and can be achieved with appropriate doping profiles).
The figure stated in Eq. 1.1 is the diffusive figure of merit. The drift figure of merit νdrift is very similar, the only
difference being that it replaces the thermal energy kBT in Eq. 1.1 with the bandgap Eg.
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However, material parameters are only half the problem. The other half of the problem is
device design. The detailed balance model cannot capture the effects of device design parameters
(e.g., layer thicknesses), so a device model is required instead.

Device models are important for designing and optimizing all optoelectronic devices [26]. It
would be prohibitively expensive to perform such design optimization by manufacturing candidate
devices and analyzing them. Device models allow this semiconductor research to be performed
in silicio (figuratively, rather than literally). Existing device models allow treatment of only
0-, 1-, and 2-band materials, but do not implement the PDE’s required for 3-band IB materials.
Moreover, unlike standard semiconductor photovoltaics, IB materials require self-consistent optics
since the light propagation depends on the sub-bandgap optical absorption which depends on the
IB filling fraction, which then depends on carrier densities and currents everywhere else inside
the device [27]. For example, we present an effect in IB materials which requires self-consistent
optics to be modelled: the sub-bandgap optical absorption processes depend on the IB’s filling
fraction (e.g., the IB→CB absorption process cannot happen if the IB is empty), so the sub-
bandgap optical absorptions must be matched to each other or else the VB→IB→CB process will
be limited by the weakest of its sub-processes. That is, unless the IB mobility is high enough to
equalize the filling fraction throughout a wide IB region – we show an example of this phenomenon
in Figures 5.8–5.10, and we invite the reader to see a more in-depth treatment in [28]. The absence
of good device modeling (Table 5.1) has hindered the development of IBSCs, as it has been hard to
simulate experiments accurately and impossible to systematically choose layer thicknesses, which
is essential to making high-efficiency devices.

To address this glaring gap in IBSC device modeling, we developed our own device model
named Simudo, a steady state Poisson/drift-diffusion device model supporting both standard and
intermediate band semiconductors, as well as self-consistent optics and arbitrary user-defined inter-
band processes (allowing the user to implement their own e.g., Auger recombination process).
Simudo is written in Python and uses the FEniCS finite element platform [29, 30, 31], and has been
released as free and open source software available for all to use at github.com/simudo/simudo.

Chapters 2–4 offer the background required for Chapter 5 which is a reproduction of the device
model paper introducing Simudo for the first time [1]. In that chapter, we show that Simudo
compares favourably and even outperforms commercial software Synopsys Sentaurus (Figure 5.4)
on a reference problem by having quartic rather than quadratic convergence with respect to the
number of mesh points. We also demonstrate in Section 5.4.3 Simudo’s ability to deal with IB
devices by using it to answer a legitimate research question: can IB mobility can compensate for
mismatched optical absorption processes in different spatial regions of the device? (The answer is
“yes, and here’s some plots to tell you what mobility is necessary”. Further work on this question
using Simudo was performed in [28].) Finally, Chapter 6 shows some of the device model designs

3
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that acted as precursors to Simudo, along with explanations as to why they failed.

1.2 Organization

The first three chapters are intended to be pedagogical, and hopefully useful to students new to
photovoltaics. As such, we proudly display intermediate steps in derivations, and we prioritize
qualitative behaviour and pedagogical value over quantitative accuracy.

Chapter 2 is a gentle introduction to semiconductor physics, with emphasis on carrier transport
and solar cells. The target audience is the average physics BSc who didn’t take solid state physics
or who slept through it.

Chapter 3 examines a common assumption introduced in the previous chapter called the law
of the junction, and derives rigorous bounds for its validity using minimal assumptions.

Chapter 4 is a gentle introduction to the finite element method, with emphasis on nonlinear
equations. The target audience is the average physics BSc who has never touched FEM and who
vaguely remembers Newton’s method from second year calculus (and potentially confuses it with
the bisection method).

Chapter 5 is the device model paper introducing Simudo for the first time [1].
Chapter 6 describes some of the many things that we tried and failed before arriving at the

working drift-diffusion formulation described in section 5.3.3.

4



Chapter 2

Semiconductor physics

This chapter is the solar cells physics primer that the author wishes they had read at the start of
their Masters degree. Hopefully you will find it useful too.

We start by considering carriers in uniform semiconductors, with (uniform) doping and electric
fields. We then move to a homojunction and introduce the depletion approximation. We derive
the J(V ) (current as a function of applied potential) curve. Finally we compare the model against
a full drift-diffusion model.

2.1 Homogeneous slab of semiconductor

Consider a homogeneous slab of standard semiconductor at thermal equilibrium, with a conduction
band and a valence band. In the non-degenerate case where the Fermi level w is away from the
band edges EC , EV (also known as the Boltzmann approximation) the carrier concentration uk in
the bands can be written as

uC = NCe
−β(EC−w) (2.1)

uV = NV e
−β(w−EV ) (2.2)

where w is the Fermi level, Nk is the effective density of states, and β = 1/kBT is the reciprocal
of the thermal energy.

Relaxing the thermal equilibrium condition yields an extremely useful relationship: suppose
that the carriers in each semiconductor band are at equilibrium with themselves (within the same
band, but not necessarily across bands). This assumption is reasonable because the picosecond
timescale for intra-band thermalization1 is much shorter than the microsecond timescale for inter-

1“Thermalization” is the process that makes carriers’ energy distribution approach the Fermi-Dirac or Boltzmann

5



band thermalization (which is usually referred to as “recombination”). In this case, each band k

has its own pseudo-Fermi level wk called a “quasi-Fermi level”. We can then write

uC = NCe
−β(EC−wC) (2.3a)

uV = NV e
−β(wV −EV ) (2.3b)

or more generally

uk = Nke
−skβ(wk−Ek) (2.4)

where sV = 1 for holes and sC = −1 for electrons.
In the following subsections will first consider an undoped (“intrinsic”) semiconductor, and then

a doped (“extrinsic”) semiconductor. We will then introduce electric potential into Eq. 2.3.

2.1.1 Intrinsic semiconductor

Assume thermal equilibrium, so that wC = wV . In an undoped (intrinsic) semiconductor, every
electron in the conduction band must have come from the valence band (and therefore left a hole
behind), so uC = uV . We can solve for the intrinsic Fermi level wi = wC = wV and carrier
concentration ui = uC = uV .

1 =
uC
uV

=
NCe

−β(EC−wi)

NV e−β(wi−EV )
(2.5)

1 =
NC

NV

e−β(EC+EV −2wi) (2.6)

NV

NC

eβ(EC+EV ) = e2wiβ (2.7)

βwi =
1

2
ln
NV

NC

+ β
EC + EV

2
(2.8)

The intrinsic carrier concentration ui is then simply

ui =
√︂
u2i (2.9)

=
√
uCuV (2.10)

=
√︁
NCNV e

−β(EC−EV )/2 (2.11)

distributions. Typically this process is just the carriers randomly bumping into each other (i.e. electron-electron
scattering).
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where EC − EV is the bandgap of the semiconductor.

2.1.2 Extrinsic semiconductor

2.1.2.1 Mass action law

We now relax the intrinsic condition (no longer require that uC = uV ). This means that there
could be more of one type of carrier, and for now we won’t think too hard about where the excess
carrier might’ve come from (the answer is in the next section).

Using Eq. 2.8 and 2.11, we obtain

ln
uC
ui

= lnuC − lnui (2.12)

= ln
(︁
NCe

−β(EC−wC)
)︁
− ln

(︁√︁
NCNV e

−β(EC−EV )/2
)︁

(2.13)

=

[︃
lnNC − β(EC − wC)

]︃
−
[︃
1

2
lnNC +

1

2
lnNV − β

EC − EV
2

]︃
(2.14)

=
1

2
ln
NC

NV

− βEC + EV
2⏞ ⏟⏟ ⏞

−βwi

+βwC (2.15)

= β(wC − wi) (2.16)

and so

uC = uie
β(wC−wi) (2.17)

More generally,

uk = uie
skβ(wi−wk) (2.18)

We can also write

uie
skβ(wi−wk) = uk = Nke

−skβ(wk−Ek) (2.19)

uie
skβwi = Nke

skβEk (2.20)

If the semiconductor is at thermal equilibrium, we have

uCuV = NCe
−β(EC−�w)NV e

−β(�w−EV ) (2.21)

uCuV = NCNV e
−β(EC−EV ) (2.22)

7



and so the product uCuV is independent of the Fermi level w. We note that at w = wi (intrinsic
case) we have uC,intrinsic = uV,intrinsic = ui, and so

uCuV = u2i (2.23)

which is called the mass action law.

2.1.2.2 Doping

Suppose that the semiconductor has been shallowly doped with dopant concentrations NA and
ND (acceptors and donors respectively). We assume that donor atoms are charge neutral when
filled (and positive when empty), and acceptor atoms are charge negative when filled (and neutral
when empty). Donors enter with an extra electron at zero temperature, and acceptors enter with
no extra electrons at zero temperature – the naming might seem counterintuitive, but “donors”
and “acceptors” are named after their behaviour as the temperature is increased from absolute zero
(at zero temperature, they haven’t donated or accepted anything yet). Let fA and fD denote the
electron filling fractions of the acceptor and donor levels (i.e. given a dopant atom, what’s the
probability that it has an electron). Then

uV +ND = uC + fANA + fDND (2.24)

uV + (1− fD)ND = uC + fANA (2.25)

Proof. One way to find Eq. 2.24 is to note that (simply by electron conservation) we must have
that

uV − (uC + fANA + fDND) = C (2.26)

for some constant C. Changing the temperature should not change the number of electrons in
the semiconductor, so C should not change either. In order to find the value of the constant C,
we consider the carrier concentrations at T = 0. At zero temperature the conduction and valence
band carrier concentrations go to zero, the acceptors are empty, and the donors are full. Therefore

uV⏞⏟⏟⏞
0

−( uC⏞⏟⏟⏞
0

+ fANA + fDND⏞ ⏟⏟ ⏞
ND

) = C (2.27)

=⇒ −ND = C (2.28)

=⇒ uV − (uC + fANA + fDND) = −ND (2.29)

8



and so we recover Eq. 2.24.

Rearranging Eq. 2.24 we obtain

uC − uV = (1− fD)ND − fANA (2.30)

We can rewrite the left-hand side using Eq. 2.18 as

uC − uV = uie
β(w−wi) − uieβ(wi−w) (2.31)

uC − uV = 2ui sinh β(w − wi) (2.32)

We now focus on the right-hand side of Eq. 2.30. In standard groups2 IV, III/V, and II/VI
semiconductors, the equilibrium fA and fD are Fermi factors

fD,electrons =
1

1 + 1
2
e−β(w−ED)

(2.33)

fA,holes =
1

1 + 1
4
e−β(EA−w)

(2.34)

where the 1
4

and 1
2

factors in fA, fD are due to degeneracy3 and where EA and ED are the energy levels
of the acceptor and donor dopants respectively. In this case, electrons are two-fold degenerate due
to spin (two electrons with opposite spin can have the same energy level), and holes are four-fold
degenerate (spin, and light/heavy hole) [32, Eq. 19.31-19.32]. Substituting, we obtain that

(1− fD)ND − fANA = (1− 1

1 + 1
2
eβ(ED−w)

)ND −
1

1 + 1
4
eβ(EA−w)

NA (2.35)

(1− fD)ND − fANA =
ND

1 + 2e−β(ED−w)
− NA

1 + 1
4
e−β(w−EA)

(2.36)

We note that if w is far away from the dopant levels (a stronger version of the non-degenerate as-
sumption), then the exponential factors in the denominators are negligible, and combining Eq. 2.32

2columns of the Mendeleev table
3The degeneracy factors may be different for other semiconductors. Different degeneracy factors end up being

equivalent to just shifting EA or ED slightly.
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and 2.36 we have

2ui sinh β(w − wi) =
ND

1 + 2 e−β(ED−w)⏞ ⏟⏟ ⏞
≪1

− NA

1 + 1
4
e−β(w−EA)⏞ ⏟⏟ ⏞

≪1

(2.37)

2ui sinh β(w − wi) ≈ ND −NA (2.38)

w ≈ wi + kBT arcsinh
ND −NA

2ui
(2.39)

This isn’t an unreasonable assumption. Dopants—intentional ones at least—tend to be shallow,
i.e. ED is close to EC and EA is close to EV . Intermediate band and unintentional/unwanted dopants
may be deep instead (deeper into the bandgap).

As long as the doping doesn’t exceed ui by too many orders of magnitude4, our revised non-
degenerate assumption still holds.

We can solve for uC and uV in terms of ND and NA using the mass-action law uCuV = u2i from
Eq. 2.23.

uC − uV = ND −NA (2.40)

uC −
u2i
uC

= ND −NA (2.41)

u2C −
[︁
ND −NA

]︁
uC −

[︁
u2i
]︁
1 = 0 (2.42)

uC =
1

2

[︁
ND −NA

]︁
+

1

2

[︁
(ND −NA)

2 + 4u2i
]︁1/2 (2.43)

and uV =
1

2

[︁
NA −ND

]︁
+

1

2

[︁
(ND −NA)

2 + 4u2i
]︁1/2 (2.44)

where we picked the positive roots.5

We note that if ND ≫ ui and ND ≫ NA (but not sufficiently to break the non-degeneracy
condition), then uC ≈ ND, and similarly for NA ≫ ui and NA ≫ ND, we have uV ≈ NA.

2.1.3 Potential energy

Suppose that now we have an additional potential U(x⃗), such that each conduction band carrier
gains energy U(x⃗) in moving from x⃗ to∞ (or some reference point), and each valence band carrier
loses energy U(x⃗) in doing the same. This locally modifies the density of states at position x⃗ by
shifting D′(E) = D(E + U), which shifts E ′C = EC + U and w′ = w + U .

If the entire semiconductor crystal is exposed to a spatially constant potential U , then we
should have the same resulting carrier densities uC and uV (and the same ui) as if the potential

4It can actually exceed by many orders of magnitude! Just not too many orders of magnitude.
5Negative roots correspond to negative carrier densities, which are unphysical.
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Figure 2.1: Silicon equilibrium carrier density in the conduction and valence bands as a function
of the net doping ND −NA. Note that silicon has ui ≈ 1010 cm−3 at T = 300 K.

wasn’t there. As a result, from Eq. 2.18 we must have that

u′C = uC (2.45)

= uie
β(wC−wi) (2.46)

= uie
β((w′

C−U)−wi) (2.47)

and

u′V = uV (2.48)

= uie
β(wi−wV ) (2.49)

= uie
β(wi−(w′

V −U)) (2.50)

We can expect the same equations to hold in a region where the potential is quasiconstant.
Now let’s take U to correspond to electric potential ϕ. Then U = (−q)ϕ (where q is the elementary
charge) since U corresponds to the potential energy for a conduction band carrier (which has charge

11



−q), which results in

uC = uie
β(wC+qϕ−wi) (2.51a)

uV = uie
β(wi−wV −qϕ) (2.51b)

Using Eq. 2.20, this can also be written as

uC = NCe
β(wC+qϕ−EC) (2.52a)

uV = NV e
β(EV −wV −qϕ) (2.52b)

In general,

uk = uie
skβ(wi−wk−qϕ) (2.53)

or uk = Nke
skβ(Ek−wk−qϕ) (2.54)

Remark. It is useful to think about wi (or Ek) being modified by the addition of −qϕ. After all, wi

is defined as being the electrochemical potential w such that uC = uV , a definition which (under
the replacement w′

i = wi − qϕ) should remain unaffected by the addition of electric potential.
This modification also preserves the requirement of w of being an energy quantity that is spatially
constant at thermal equilibrium.

We note that the electrical potential ϕ itself is determined by uC and uV through Poisson’s
equation ∇ · (ε∇ϕ) = −ρ, where ε is the permittivity. Then

−ε
q
∇2ϕ =

ρ

q
(2.55)

−ε
q
∇2ϕ = uV − uC +ND −NA (2.56)

2.2 pn junction

An isolated homogeneous slab of semiconductor on its own isn’t very useful (except maybe for
producing materials science papers). Varying the material properties spatially (usually by selec-
tive doping) is what allows us to make useful devices like diodes and transistors and computer
processors. Most of the interesting physics can be found in the simplest of these devices, the pn
junction (also known as the simplest possible diode design).

We have p-doped semiconductor from xpc < 0 to xJ = 0, and n-doped semiconductor from
xJ = 0 to xnc > 0. At xpc and xnc are located electrical contacts (whose exact behaviour we will
hold off from describing for the moment). The dopant concentrations are NA and ND in each of

12



p-type n-type

quasi-
neutral depletion region

metal
contact

surface
recomb.

(a)

ρ ≈ 0 ρ≈−qNA ρ≈+qND

ϕ ≈ 0 d2ϕ/dx2 ≈ −ρ
(two quadratics)

quasi-
neutral

surface
recomb.

dE/dx ≈ ρ
(two affine funcs)

metal
contact

ρ ≈ 0

E ≈ 0 E ≈ 0 

(b)

(c)

(d)

(e) ϕ ≈ Vbi x

0xpdxpc xnd xnc

 

Figure 2.2: Diagram detailing the setup of this problem using the depletion approximation. We
label (a) material type; (b) model used in each spatial region; (c) the electrostatic charge density,
(d) electric field (given by Eq. 2.78), and (e) electrostatic potential (Eq. 2.90).

the two regions respectively. This geometry can be seen in Figure 2.2.
For now we are assuming equilibrium conditions (no external potential applied across contacts).
As we imagine gluing together the two halves of a diode, we see that there will be an electron

flow from the n side to the p side since wp-side < wn-side (the Fermi level for the p-side sticks close
to the VB band edge, and the n-side Fermi level sticks close to the CB band edge). This electron
flow will continue until the electric potential rises sufficiently on the n side to equalize the chemical
potential.

We now derive the electric field and potential of a pn diode in the depletion approximation.
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2.2.1 Depletion region

Consider −xpc and xnc to be large and NA, ND ≫ ui. The chemical potential must be the same
throughout the junction. The electrical potential must be a solution of

−ε
q
∇2ϕ = uV (x)− uC(x) +

⎧⎨⎩+ND x ≥ xJ

−NA x ≤ xJ
(2.57)

−ε
q
∇2ϕ = uie

β(wi−w−qϕ) − uieβ(w+qϕ−wi) +

⎧⎨⎩+ND x ≥ xJ

−NA x ≤ xJ
(2.58)

−ε
q
∇2ϕ = 2ui sinh β

(︁
wi − w − qϕ(x)

)︁
+

⎧⎨⎩+ND x ≥ xJ

−NA x ≤ xJ
(2.59)

where we used Eq. 2.56 and 2.51a. At thermal equilibrium we can shift our definition of potential
by a constant by letting ϕ′ = ϕ− 1

q
(w − wi), and obtain

−ε
q
∇2ϕ′ = −2ui sinh βqϕ′ +

⎧⎨⎩+ND x ≥ xJ

−NA x ≤ xJ
(2.60)

Unfortunately, we are not aware of any analytic solution to this differential equation.

Assumption 1 (Depletion region approximation). On their own, the two semiconductor halves
would have Fermi levels wV < wC. As a result, when the two halves of the junction are brought
together, electrons flow from the n-type side to the p-type side. This results in a build-up of negative
charge on the p-type side and positive charge on the n-type side.

The depletion region approximation states that in a region x ∈ [xpd, xnd], there are almost
no free carriers at all (and the dopant atoms are entirely ionized), and everywhere else (x ∈
[xpc, xpd]∪ [xnd, xnc]) we have charge neutrality and E⃗ ≈ 0. We logically define the depletion widths
(always positive)

Wp = xJ − xpd = −xpd (2.61)

Wn = xnd − xJ = xnd (2.62)

since xJ = 0.

We motivate the validity of the full ionization assumption underlying the depletion approxima-
tion by comparing the resulting solution against a real solution of a Eq. 2.60, as well as by noting
that the carrier concentrations drop off exponentially inside the depletion region Figure 2.3.
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Figure 2.3: Carrier concentrations near the depletion region (shown in red) for a silicon junction
with ND = NA = 5 × 1015 cm−3 at T = 300 K. The solid line is a true solution of Eq. 2.60
(evaluated numerically using Simudo) and the dashed line is the depletion approximation. Note
that the true solution uV falls off exponentially fast with x inside the depletion region, and falls
to 10% of its p-type region equilibrium value u(0)V ≈ NA within 0.10 µm of the depletion region
edge xpd, and falls to 1% of NA within 0.17 µm of xnd. For comparison, the width of the depletion
region W ≈ 0.59 µm.
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At thermal equilibrium, w must be constant throughout the device. By invoking charge neu-
trality in the quasi-neutral regions, we have

NA ≈ uV

⃓⃓⃓
p-type

=uie
β(wi−w−qϕp) (2.63)

ND ≈ uC

⃓⃓⃓
n-type

=uie
−β(wi−w−qϕn) (2.64)

where ϕp and ϕn are electrostatic potentials in the p-type and n-type quasi-neutral regions respec-
tively6. Then

NAND = uie
β(��wi−�w−qϕp)uie

−β(��wi−�w−qϕn) (2.65)

NAND = u2i e
βq(ϕn−ϕp) (2.66)

1

βq
ln
NAND

u2i
= ϕn − ϕp ≡ Vbi, (2.67)

which is called the built-in potential.
Invoking the depletion region approximation, we then have a charge density

ρ(x) = q

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 x ∈ [xpc, xpd]

−NA x ∈ [xpd, 0]

+ND x ∈ [0, xnd]

0 x ∈ [xnd, xnc]

(2.68)

We set potential ϕ(x = −∞) = 0 (i.e. it is zero on the p-type side). These conditions can be
visualized in Figure 2.2. To not have significant electric field outside the depletion region, it must
be that the depletion region is overall neutral. Then

0 =

ˆ
ρ dx (2.69)

0 = (−q)NAWp + qNDWn (2.70)

NAWp = NDWn (2.71)

6Since the regions are quasi-neutral, the electrostatic potential must be (quasi-)constant inside each region, so
ϕp and ϕn are (quasi-)well defined.
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We apply Gauss’ law7 to get electric field within depletion region. Consider x ∈ [xpd, 0]. Then

ˆ x

xpd

ρ(x) dx = Q =

ˆ
∂

εE⃗ · ds⃗ = ε(E⃗(x)−

0⏟ ⏞⏞ ⏟
E⃗(xpd)) (2.72)

=⇒ −qNA(x− xpd) = εE⃗(x) (2.73)

=⇒ E⃗(x) =
−qNA

ε
(x− xpd) (2.74)

Similarly, for x ∈ [0, xnd] we obtain

E⃗(x) =
−qND

ε
(xnd − x) (2.75)

In particular, we note that at x = xJ = 0 we have

E⃗(xJ) =
−qNA

ε
Wp, and (2.76)

E⃗(xJ) =
−qND

ε
Wn (2.77)

which are equal to each other because of Eq. 2.71. This equality confirms that the electric field is
continuous at the junction. To reiterate our results, we have used the depletion region approxima-
tion and obtained that

E⃗(x) = −q
ε

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

≈ 0 x ∈ [xpc, xpd]

(x− xpd)NA x ∈ [xpd, xJ ]

(xnd − x)ND x ∈ [xJ , xnd]

≈ 0 x ∈ [xnd, xnc]

(2.78)

7Gauss’ law in 1D, also known as the fundamental theorem of calculus.
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We now find the electric potential. We have ϕ(x ≤ xpd) = 0. Now for x ∈ [xpd, xJ ] we have

ϕ(x)− ϕ(xpd) = −
ˆ x

xpd

E⃗ · dx⃗ (2.79)

= −
ˆ x

xpd

−q
ε
(ξ − xpd)NA dξ (2.80)

=
q

ε
NA

ˆ x

xpd

(ξ − xpd) dξ (2.81)

=
q

ε
NA

[︃
(ξ − xpd)2

2

]︃x
ξ=xpd

(2.82)

=
q

ε
NA

1

2
(x− xpd)2 (2.83)

For x ∈ [xJ , xnd], we have

ϕ(x)− ϕ(xJ) = −
ˆ x

xJ

E⃗ · dx⃗ (2.84)

= −
ˆ x

xJ

−q
ε
(xnd − ξ)ND dξ (2.85)

= −q
ε
ND

ˆ x

xJ

(ξ − xnd) dξ (2.86)

= −q
ε
ND

[︃
(ξ − xnd)2

2

]︃x
ξ=xJ

(2.87)

=
q

ε
ND

1

2

(︂
(xJ − xnd⏞ ⏟⏟ ⏞

Wn

)2 − (x− xnd)2
)︂

(2.88)

=
q

ε
ND

1

2

(︂
W 2

n − (x− xnd)2
)︂

(2.89)

Combining these expressions, we obtain

ϕ(x)− ϕ(xpd) =
q

ε

1

2
NA(x− xpd)2 x ∈ [xpd, xJ ] (2.90a)

ϕ(x)− ϕ(xJ) =
q

ε

1

2
ND

[︂
W 2

n − (x− xnd)2
]︂

x ∈ [xJ , xnd] (2.90b)

18



Then the built-in electrical potential Vbi across the depletion region is

Vbi = ϕ(xnd)− ϕ(xpd) (2.91)

=
q

ε
ND

1

2

(︂
W 2

n − (xnd − xnd)2
)︂
+
q

ε
NA

1

2
(0− xpd⏞ ⏟⏟ ⏞

Wp

)2 (2.92)

=
q

ε
ND

1

2
W 2

n +
q

ε
NA

1

2
W 2

p (2.93)

=
1

2

q

ε
(NAW

2
p +NDW

2
n) (2.94)

Invoking overall charge neutrality of the depletion region Eq. 2.71, NAWp = NDWn, we can
solve for Wn and Wp in terms of Vbi. We have

Wp =
ND

NA

Wn (2.95)

Vbi =
1

2

q

ε
(NAW

2
p +NDW

2
n) (2.96)

Vbi =
1

2

q

ε

(︂
NA

N2
D

N2
A

W 2
n +NDW

2
n

)︂
(2.97)

Vbi =
1

2

q

ε

(︂ND

NA

+ 1
)︂
NDW

2
n (2.98)

Wn =

√︄
2Vbiε

q
(︁
ND

NA
+ 1
)︁
ND

(2.99)

and Wp =

√︄
2Vbiε

q
(︁
NA

ND
+ 1
)︁
NA

(2.100)
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We can solve for the width of the depletion region,

Wdepletion ≡ xnd − xpd
= Wn +Wp (2.101)

=

√︄
2VbiεNA

q
(︁
ND +NA

)︁
ND

+

√︄
2VbiεND

q
(︁
NA +ND

)︁
NA

(2.102)

=

√︄
2Vbiε

q
(︁
ND +NA

)︁(︃√︃NA

ND

+

√︃
ND

NA

)︃
(2.103)

=

√︄
2Vbiε

q
(︁
ND +NA

)︁(︃√︄ N2
A

NDNA

+

√︄
N2

D

NAND

)︃
(2.104)

=

√︄
2Vbiε

q
(︁
ND +NA

)︁NA +ND√
NDNA

(2.105)

=

√︄
2Vbiε

q
(N−1

A +N−1
D ) (2.106)

Plugging in Eq. 2.67, we obtain

Wdepletion =

√︄
2Vbiε

q
(N−1

A +N−1
D ) (2.107)

=

√︄
2ε

βq2
(N−1

A +N−1
D ) ln

NAND

u2i
(2.108)

2.2.2 Depletion region under non-equilibrium conditions

Now consider that a bias is applied across the device. We continue to model this situation using the
depletion approximation (the quasi-neutral regions remain quasi-neutral and the depletion region
remains fully depleted), so the only thing that can change is the depletion width. Moreover, we
continue to assert quasi-neutrality outside of the depletion region through the condition in Eq. 2.95
(for otherwise the quasi-neutral regions would no longer be so). Therefore 2.96 becomes

∆V = ϕ(Wn)− ϕ(Wp) (2.109)

=
1

2

q

ε
(NAW

2
p +NDW

2
n) (2.110)
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and so the depletion width is

Wdepletion = Wn +Wp =

√︄
2∆V ε

q
(N−1

A +N−1
D ) (2.111)

We peek ahead to Eq. 2.146 to retrieve

∆V = Vbi − Vext (2.112)

which really just gives us the sign of Vext that will make most sense in the future. Another way
of justifying the minus sign in front of Vext is that we expect to connect the positive lead of a
multimeter or battery to the p-type side of the diode (instead of the rightmost contact which is
on the n-type side), and that a positive Vext should correspond to forward bias (which decreases
the “diodeness” of the diode by lowering the potential barrier). Then

Wdepletion =

√︄
2(Vbi − Vext)ε

q
(N−1

A +N−1
D ) (2.113)

Of course, this is invalid when Vext ≥ Vbi, i.e., when the external potential difference overcomes
the built-in potential Vbi.

2.2.3 Drift-diffusion equations

Our ultimate goal is to use the depletion approximation to find the current flowing through the
device as well as all other physical quantities (e.g., uk, ϕ). We require a model to treat electric
current.

The drift-diffusion model provides a set of equations that describe the movement of carriers
within the semiconductor bands[32, Eq. 19.67-19.68]. This model is a very popular approximation
based on the Boltzmann transport equation[33]. The Boltzmann transport equation is itself is an
approximation to the Vlasov equation – there are many semiconductor transport models, as seen
in Fig. 2.4. The model provides two equations for each band k,

j⃗k =

drift⏟ ⏞⏞ ⏟
qµkukE⃗−

diffusion⏟ ⏞⏞ ⏟
skqDk∇⃗uk drift-diffusion equation (2.114a)

∂uk
∂t

= −sk
1

q
∇⃗ · j⃗k + gk continuity equation (2.114b)

where j⃗k is the electric current flowing inside band k, µk is the carrier mobility, Dk is the carrier
diffusivity, qsk is the electric charge of a carrier in band k (so sC = −1 and sV = +1), and gk is
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you are here

Figure 2.4: Diagram of the semiconductor transport models adapted from [33].

the net carrier generation (carriers received from other bands minus carriers lost to other bands –
see Section 5.2.2).

For the conduction and valence bands in this section, we will use a simple relaxation model for
minority carriers, in which

gC =

⎧⎨⎩−
uC−u

(0)
C

τC
x ≤ xpd (minority carrier)

0 otherwise
(2.115a)

gV =

⎧⎨⎩−
uV −u

(0)
V

τV
x ≥ xnd (minority carrier)

0 otherwise
(2.115b)

such that

∂uC
∂t

⃓⃓⃓⃓
⃓
minority

=
1

q
∇⃗ · j⃗C −

uC − u(0)C

τC⏞ ⏟⏟ ⏞
gC

(2.116a)

∂uV
∂t

⃓⃓⃓⃓
⃓
minority

= −1

q
∇⃗ · j⃗V −

uV − u(0)V

τV⏞ ⏟⏟ ⏞
gV

(2.116b)
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apply in the regions where the carrier is the minority carrier (e.g., p-type region for CB carriers).
This simple relaxation model otherwise sets the generation to zero in the regions where the carrier
is the majority carrier, as well as in the depletion region.

j⃗C = qµCuCE⃗ + qDC∇⃗uC (2.117a)

j⃗V = qµV uV E⃗ − qDV ∇⃗uV (2.117b)

Remark 1. One would think that in Eq. 2.116 the minority −uC−u
(0)
C

τC
term in ∂uC

∂t
would also appear

in the majority ∂uV

∂t
as −uC−u

(0)
C

τC
instead of being zero, since it takes two to recombine. In other

words, these equations do not seem to preserve total charge. However, we will only use Eq. 2.116 to
describe the flow of minority carriers (n carriers in p-type material in the stated example), where
changes in the minority carrier are negligible compared to the majority carrier concentration.
Accurate bimolecular recombination requires formulae that depend on both uC and uV . In some
very important limits (e.g., looking at minority carrier under low injection), it reduces to a simple
rate constant, as written above.

Lemma 1. We have the following (Einstein) relations between mobility and diffusivity,

µC = DCβq (2.118)

µV = DV βq (2.119)

for a non-degenerate semiconductor.

Proof. Suppose we have a uniformly doped semiconductor at equilibrium with an imposed electric
field E⃗. Then jC = 0, and so

0⃗ = j⃗C = qµCuCE⃗ + qDC∇⃗uC (2.120)

0⃗ = ◁qµC��uie
β(�w+qϕ−��wi)E⃗ + ◁qDC∇⃗��uieβ(�w+qϕ−��wi) (2.121)

0⃗ = µCe
β(qϕ)E⃗ +DC∇⃗eβ(qϕ) (2.122)

0⃗ = µC�
��

eβ(qϕ)E⃗ +DC�
��

eβ(qϕ)βq ∇⃗ϕ⏞⏟⏟⏞
−E⃗

(2.123)

0⃗ = µCE⃗ −DCβqE⃗ (2.124)

µC = DCβq (2.125)

Similarly, we obtain µV = DV βq.

The rest of this section will be spent solving equations Eq. 2.117 and 2.116 at steady state within
the depletion approximation, with the additional assumptions that in the quasi-neutral regions,
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the electric field is small so the drift currents qµkukE⃗ of the minority carriers are negligible. Their
transport is then purely diffusive, giving

j⃗C

⃓⃓⃓
p-type

= qµCuCE⃗⏞ ⏟⏟ ⏞
≈0

+qDC
∂uC
∂x

, x < xpd (2.126)

j⃗V

⃓⃓⃓
n-type

= qµV uV E⃗⏞ ⏟⏟ ⏞
≈0

−qDV
∂uV
∂x

, x > xnd (2.127)

There are called the minority carrier diffusion equations.

2.2.4 Law of the junction

The last missing piece of the puzzle is some way to relate the carrier concentrations on opposite
sides of the depletion region. That relationship is the law of the junction, and in the following
two sections we show two commonly used justifications for it. Chapter 3 shows a more formal
derivation of the law of the junction, indicating clearly the requirements for its application.

2.2.4.1 With majority carrier quasi-Fermi level extension into depletion region

If the junction is not at equilibrium (e.g., there is an applied potential across it), we can still
consider the quasi-neutral regions themselves to be (approximately) at thermal equilibrium far
away from the junction, and therefore define quasi-Fermi levels for them, called wC and wV . We
use the symbol wk for the quasi-Fermi level rather than the traditional µk in order to avoid confusion
with the mobility – using the same symbol for both would have made Eq. 5.5 very confusing.

Assumption 2. We suppose that the quasi-Fermi levels for the majority carrier extend into the
depletion region. As supporting evidence, see Figure 2.5. For a more formal treatment of this
assumption, see [3]. To be more specific, we recall

uC = uie
β(wC(x)+qϕ(x)−wi) (2.128)

uV = uie
β(wi−wV (x)−qϕ(x)) (2.129)

and we assert that

wC(x)
⃓⃓⃓
x∈[xpd,xnc)

= wC(xnc) (2.130)

wV (x)
⃓⃓⃓
x∈(xpc,xnd]

= wV (xpc) (2.131)

This can be visualized in table 2.1.
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Figure 2.5: Quasi-Fermi levels wk (shown in red) for a silicon junction with ND = NA = 5 ×
1015 cm−3 with an applied bias of Vext = 0.5 V, using a full drift-diffusion solver (Simudo). The
parameters are fully described in the caption of Figure 2.8. The majority carrier quasi-Fermi levels
extend throughout the depletion region and appear nearly flat.

Table 2.1: Summary of assumptions used in section 2.2.4.1.
x ∈ (xpc, xpd] [xpd, xJ ] [xJ , xnd] (xnd, xnc]

Regime quasi-neutral depletion region quasi-neutral
Doping p-type NA n-type ND

wC TBD constant by assu. 2
wV constant by assu. 2 TBD
ϕ(x) constant Eq. 2.90 constant
E⃗(x) ≈ 0 Eq. 2.78 ≈ 0
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Since the quasi-neutral regions are quasi-neutral, we also have

ϕ(xnc) = ϕ(x)
⃓⃓⃓
x∈[xnd,xnc)

(2.132)

ϕ(xpc) = ϕ(x)
⃓⃓⃓
x∈(xpc,xpd]

(2.133)

Then

uC(xpd) = uie
β(wC(xpd)+qϕ(xpd)−wi) (2.134)

= uie
β(wC(xnc)+qϕ(xpd)−wi) (2.135)

= uie
β(wC(xnc)+qϕ(xnc)−wi)⏞ ⏟⏟ ⏞

=uC(xnc)=uC(xnd)≈ND

eβq(ϕ(xpd)−ϕ(xnc)) (2.136)

≈ NDe
βq(ϕ(xpd)−ϕ(xnc)) (2.137)

= NDe
−βq∆V (2.138)

and similarly

uV (xnd) = uie
β(wi−wV (xnd)−qϕ(xnd)) (2.139)

= uie
β(wi−wV (xpc)−qϕ(xpc))⏞ ⏟⏟ ⏞

=uV (xpd)≈NA

eβq

−∆V⏟ ⏞⏞ ⏟
(ϕ(xpc)− qϕ(xnd)) (2.140)

≈ NAe
−βq∆V (2.141)

Then at x = xpd,

(NDe
−βq∆V )(NA) = uC(x)

≈NA⏟ ⏞⏞ ⏟
uV (x) (2.142)

= uie
β(wC(x)+qϕ(x)−wi)uie

β(wi−wV (x)−qϕ(x)) (2.143)

= u2i e
β(wC(x)−wV (x)) (2.144)

so

NAND

u2i
e−βq∆V = eβ(

≡qVext⏟ ⏞⏞ ⏟
wC(x)− wV (x)) (2.145)

∆V =
1

βq
log

NAND

u2i⏞ ⏟⏟ ⏞
Vbi

−Vext (2.146)
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From Eq. 2.146 we obtain

e−βq∆V = exp

{︃
− βq

(︃
1

βq
log

NAND

u2i
− Vext

)︃}︃
(2.147)

=
u2i

NAND

eβqVext (2.148)

We combine this result with Eq. 2.138 to obtain

uC(xpd) ≈ NDe
−βq∆V (2.149)

= ND
u2i

NAND

eβqVext (2.150)

=
u2i
NA

eβqVext (2.151)

Similarly, from Eq. 2.141 we obtain

uV (xnd) ≈
u2i
ND

eβqVext (2.152)

These two results constitute the law of the junction.

2.2.4.2 With informally justified drift-diffusion

We now rederive the law of the junction without the assumption that wk is constant through the
the depletion region. Instead, we assume that the current j⃗C is small in magnitude compared to the
drift and diffusion terms taken separately (see Figure 2.6). Using the Einstein relation µC = DCβq

(lemma 1), we write

0 ≈ j⃗C = q µC⏞⏟⏟⏞
DCβq

uCE⃗ + qDC∇⃗uC (2.153)

0 = qDCβquCE + qDC
duC
dx

(2.154)

−βquCE =
duC
dx

(2.155)

−βqE dx =
duC
uC

(2.156)

βq(ϕ− ϕ1) = ln
uC
uC,1

(2.157)

uC = uC,1e
βq(ϕ−ϕ1) (2.158)
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where ϕ1 and uC,1 are the potential and CB carrier concentration at another arbitrary point x1. In
particular, the lack of net current between x and x1 implies equal chemical potentials at the two
points, since

uC = uC,1e
βq(ϕ−ϕ1) (2.159)

��uie
β(wC(x)+qAϕ−��wi) =��uie

β(wC(x1)+q��ϕ1−��wi)eβq(Aϕ−��ϕ1) (2.160)

wC(x) = wC(x1) (2.161)

by recalling that (from Eq. 2.51a)

uC = uie
β(wC(x)+qϕ(x)−wi) (2.162)

uV = uie
β(wi−wV (x)−qϕ(x)) (2.163)

We consider the points x = xpd and x1 = xnd, and so using Eq. 2.158 we obtain

uC(xpd) = uC(xnd)e
βq
[︁
ϕ(xpd)−ϕ(xnd)

]︁
(2.164)

= uC(xnd)e
−βq∆V (2.165)

We now approximate uC(xnd) ≈ ND (the majority carrier concentration is approximately the
dopant concentration), and so

uC(xpd) = NDe
−βq∆V (2.166)

Then at the point x = xpd we have

(NDe
−βq∆V )(NA) = uC(xpd)

≈NA⏟ ⏞⏞ ⏟
uV (xpd) (2.167)

= uie
β(wC(xpd)+qϕ(xpd)−wi)uie

β(wi−wV (xpd)−qϕ(xpd)) (2.168)

= u2i e
β(wC(xpd)−wV (xpd)) (2.169)

We write w∗
C ≡ wC(xnd) and w∗

V = wV (xpd) for the majority carrier quasi-Fermi levels for
brevity. We then have

e−βq∆V =
u2i

NAND

eβ(w
∗
C−w∗

V ) (2.170)

∆V =
1

βq
ln
NAND

u2i
+

1

q
(w∗

V − w∗
C) (2.171)
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Figure 2.6: The drift and diffusion components of the current density j⃗C in a silicon pn junction
at an applied bias of Vext = 0.2 V (full parameters described in Figure 2.8). The two components
oppose each other and very nearly cancel out in the depletion region and in part of the n-type quasi-
neutral region nearby (where uC is the majority carrier). In these regions, the total current |jC | is
1–6 orders of magnitude smaller than its individual components, justifying the starting assumption
in Eq. 2.153. Diffusive transport dominates the p-type region (where uC is the minority carrier).
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Then −qVext = w∗
V − w∗

C . Note that Vext is positive when p-type side has positive applied
potential compared to n-type side, which matches our expected sign convention where Vext is
positive when a diode is in forward bias. Then

∆V =
1

βq
ln
NAND

u2i
+

1

q
(−q)Vext (2.172)

=
1

βq
ln
NAND

u2i⏞ ⏟⏟ ⏞
Vbi

−Vext (2.173)

Then the (minority) CB carrier concentration at the p-type edge of the depletion region is

uC(xpd) = NDe
−βq∆V (2.174)

uC(xpd) = ND exp

(︃
− βq

[︃
1

βq
ln
NAND

u2i⏞ ⏟⏟ ⏞
Vbi

−Vext

]︃)︃
(2.175)

uC(xpd) = ND exp

[︃
− ln

NAND

u2i
+ βqVext

]︃
(2.176)

uC(xpd) =
u2i
NA

eβqVext (2.177)

Similarly, we obtain

uV (xnd) =
u2i
ND

eβqVext (2.178)

which is the law of the junction, again.

2.2.5 Total current in a device at steady state

The total current in a device at steady state must be divergence-free (i.e. ∇⃗ · j⃗total = 0). Recall
the continuity equation Eq. 2.114b

∂uk
∂t

= −sk
1

q
∇⃗ · j⃗k + gk (2.179)

At steady state, ∂uk

∂t
is zero. By charge conservation, we must have that the net sum of

generation processes must be zero, i.e. ∑︂
k

qskgk = 0 (2.180)
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Then

0 = −sk
1

q
∇⃗ · j⃗k + gk (2.181)

∇⃗ · j⃗k = qskgk (2.182)

∇⃗ · j⃗total = ∇⃗ ·
∑︂
k

j⃗k =
∑︂
k

∇⃗ · j⃗k =
∑︂
k

qskgk = 0 (2.183)

If the current in a device only flows along one axis given by unit vector n̂ (which is true of a
typical pn junction), then the total current is a constant since

∇⃗ · j⃗total = 0 (2.184)

∇⃗ · n̂jtotal = 0 (2.185)

n̂ · ∇⃗jtotal = 0 (2.186)

∇⃗jtotal = 0⃗ (2.187)

2.2.6 Minority currents

We finally have all the parts we need. We now focus on finding the minority currents in the quasi-
neutral regions by assuming diffusive transport. Once found, we can also find the total current
without much work.

Note that we cannot re-use the jC or jV “found” using Eq. 2.117 in the depletion region, because
we assumed them to be negligible in the depletion region in order to obtain the law of the junction
boundary conditions.[32, §19.4.4]

Given the boundary conditions provided by the law of the junction (Eq. 2.151 and Eq. 2.152),
we can solve for current. Under the assumption that drift is negligible in the quasi-neutral regions,
we solve for current using Eq. 2.117 and Eq. 2.116. We shall perform the derivation for the minority
carrier in the quasi-neutral n-type region x > xnd.

Even after solving for the minority currents, we still have no good model for the majority
currents. And we don’t need one, because we can find the total current flowing through the
device without ever calculating the majority currents. Since the pn junction is a 1d device and
we are assuming steady state, the total current j must be spatially constant (Eq. 2.187). This
is extremely useful: if we can find both the hole and electron currents at any point x, then we
will have succeeded in finding total current everywhere throughout the device. We shall focus on
finding both jC and jV at xnd.

We substitute

31



0 =
∂uV
∂t

= −1

q
∇⃗ · j⃗V −

uV − u(0)V

τV
(2.188)

= −1

q

∂jV
∂x
− uV − u(0)V

τV
(2.189)

= −1

q

∂

∂x
(qµV uV E⃗⏞ ⏟⏟ ⏞

≈0

−qDV ∇⃗uV )−
uV − u(0)V

τV
(2.190)

= DV
∂2uV
∂x2

− u− u(0)V

τV
(2.191)

Then

DV τV⏞ ⏟⏟ ⏞
L2
V

∂2uV
∂x2

= uV − u(0)V (2.192)

This has solution uV = A sinh x
LV

+B cosh x
LV

+u
(0)
V where LV =

√
DV τV is the diffusion length

for the holes (minority carrier in the n-type region), since

∂x coshx = ∂x
ex + e−x

2
=
ex − e−x

2
= sinhx (2.193)

and ∂x sinhx = coshx. We verify

DV τV
∂2uV
∂x2

= uV − u(0)V (2.194)

DV τV⏞ ⏟⏟ ⏞
L2
V

∂2x

(︃
A sinh

x

LV

+B cosh
x

LV

+ u
(0)
V

)︃
= A sinh

x

LV

+B cosh
x

LV

+
�

��u
(0)
V −�

��u
(0)
V (2.195)

�
�L2
V

(︃
A

�
�L2
V

sinh
x

LV

+
B

�
�L2
V

cosh
x

LV

)︃
= A sinh

x

LV

+B cosh
x

LV

(2.196)

which checks out.
We note that we could shift the solution (x ↦→ x + x0) by any amount without changing the

fact that it is a solution, since there is no explicit dependence on x in the differential equation
Eq. 2.192. This is precisely what we will do for future convenience, so that we can apply the
boundary conditions more directly; we shift this solution so that coshx and sinhx receive a zero
argument at the depletion region boundary xpd; our solution then becomes

uV = AV sinh
x− xnd
LV

+BV cosh
x− xnd
LV

+ u
(0)
V x ≥ xnd (2.197)
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where we added subscripts on A and B so we know which minority carrier we’re referring to.
We now use the boundary conditions given by the law of the junction (Eq. 2.151 and Eq. 2.152),

i.e., the values of uC(xpd) and uV (xnd). Then

uV (xnd) = AV sinh
x− xnd
LV⏞ ⏟⏟ ⏞
0⏞ ⏟⏟ ⏞

0

+BV cosh
x− xnd
LV⏞ ⏟⏟ ⏞
0⏞ ⏟⏟ ⏞

1

+u
(0)
V (2.198)

= BV + u
(0)
V (2.199)

which fixes BV = uV (xnd) − u
(0)
V while no condition is imposed on AV (it will be fixed by the

conditions at the contacts).
A similar derivation8 follows for the n minority carrier in the quasineutral p region, resulting

in

uC = AC sinh
−(x− xpd)

LC

+BC cosh
−(x− xpd)

LC

+ u
(0)
C x ≤ xpd (2.200)

For convenience’s sake, we have swapped the signs of the argument of sinhx and coshx to make
it positive; this is equivalent to multiplying AC by −1 since sinhx is odd (the sign change does
nothing to the coshx since it’s an even function). The main reason is that we expect the solution
to be qualitatively symmetric on either side of the pn junction, so the AC and AV , and BC and
BV coefficients would have the same sign (and in fact be equal to each other in the case perfectly
symmetric case LC = LV and NA = ND).

In a way similar to how we did it for the p minority carrier, we use the boundary condition
uC(xpd) to obtain BC = uC(xpd)− u(0)C .

Now that we have the minority carrier concentrations, to get the resulting current we simply
plug Eq. 2.197 back into Eq. 2.117,

jV
⃓⃓
x≥xnd

= qµV uV E⃗⏞ ⏟⏟ ⏞
≈0

−qDV ∇⃗uV (2.201)

= −qDV
∂uV
∂x

(2.202)

= −qDV
∂

∂x

[︄
AV sinh

x− xnd
LV

+BV cosh
x− xnd
LV

+ u
(0)
V

]︄
(2.203)

= −qDV

LV

[︄
AV cosh

x− xnd
LV

+BV sinh
x− xnd
LV

]︄
(2.204)

8Proof by analogy. Or more formally, mutatis mutandis.
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and, by analogy,

jC
⃓⃓
x≤xpd

= qµCuCE⃗⏞ ⏟⏟ ⏞
≈0

+qDC∇⃗uC (2.205)

= qDC
∂uC
∂x

(2.206)

= qDC∂x

[︄
AC sinh

−(x− xpd)
LC

+BC cosh
−(x− xpd)

LC

+ u
(0)
C

]︄
(2.207)

= −qDC

LC

[︄
AC cosh

−(x− xpd)
LC

+BC sinh
−(x− xpd)

LC

]︄
(2.208)

All that’s missing is AV , and it is determined by the boundary condition at the contact between
the n-type region and the (metallic) conductor. In general

qDV
duV
dx

= −qS∆uV (2.209)

duV
dx

= − S

DV

∆uV (2.210)

at the contact, where S is the surface recombination velocity. For simplicity we (very optimistically)
set the surface recombination velocity S to zero for the minority carrier, which then implies that
duV

dx

⃓⃓⃓
x=xnc

= 0, i.e., jV (xnc) = 0. This assumption gives the boundary condition we’ve been yearning

for. (For a much more general treatment where S > 0, see [34, section 4.4].) We then have

0 = jV (xnc) = −q
DV

LV

[︄
AV cosh

xnc − xnd
LV

+BV sinh
xnc − xnd

LV

]︄
(2.211)

0 = AV cosh
xnc − xnd

LV

+BV sinh
xnc − xnd

LV

(2.212)

AV = −BV tanh
xnc − xnd

LV

(2.213)

In a similar manner, we take

0 = jC(xpc) = −q
DC

LC

[︄
AC cosh

−(x− xpd)
LC

+BC sinh
−(x− xpd)

LC

]︄
(2.214)

and we obtain

AC = −BC tanh
−(xpc − xpd)

LC

(2.215)

for n carriers in the p-type quasineutral region.
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2.2.7 Total current

We now know the minority currents at the edges of the depletion region jC(xpd) and jV (xnd). To
relate the currents on either side of the depletion region, we require one extra assumption.

Assumption 3. There is no recombination in the depletion region.

This assumption immediately implies that

jC(xpd) = jC(xnd) (2.216)

and so

jV (xnd) + jC(xpd) = jV (xnd) + jC(xnd) (2.217)

= j(xnd) (2.218)

= j(x) ∀x (2.219)

where we used the constancy of total current at steady-state in a 1d device (Eq. 2.187).
We can now take Eq. 2.213 and use it to evaluate the current Eq. 2.204 at x = xnd,

jV (xnd) = −q
DV

LV

[︄
AV⏞⏟⏟⏞

−BV tanh
xnc−xnd

LV

cosh
xnd − xnd

LV⏞ ⏟⏟ ⏞
1

+BV sinh
xnd − xnd

LV⏞ ⏟⏟ ⏞
0

]︄
(2.220)

= q
DV

LV

Bp⏞ ⏟⏟ ⏞
uV (xnd)−u

(0)
V

tanh
xnc − xnd

LV

(2.221)

= q
DV

LV

(︁
uV (xnd)− u(0)V

)︁
tanh

xnc − xnd
LV

(2.222)

Similarly we take Eq. 2.215 and Eq. 2.208,

jC(xpd) = −q
DC

LC

[︄
AC⏞ ⏟⏟ ⏞

BC tanh
xpc−xpd

LC

cosh
−(xpd − xpd)

LC⏞ ⏟⏟ ⏞
1

+BC sinh
−(xpd − xpd)

LC⏞ ⏟⏟ ⏞
0

]︄
(2.223)

= −qDC

LC

BC⏞ ⏟⏟ ⏞
uC(xpd)−u

(0)
C

tanh
xpc − xpd
LC

(2.224)

= −qDC

LC

(︁
uC(xpd)− u(0)C

)︁
tanh

xpc − xpd
LC

(2.225)
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Summing these up, we have

j = jV (xnd) + jC(xpd) (2.226)

= q

[︃
DV

LV

(︁
uV (xnd)− p(0)V

)︁
tanh

xnc − xnd
LV

+
DC

LC

(︁
uC(xpd)− u(0)C

)︁
tanh

xpc − xpd
LC

]︃
(2.227)

We now note that u(0)C =
u2
i

NA
is the equilibrium minority carrier concentration. Using the law

of the junction Eq. 2.151, we obtain

uC(xpd) =
u2i
NA

eβqVext = u
(0)
C eβqVext (2.228)

and so

uC(xpd)− u(0)C = u
(0)
C (eβqVext − 1) (2.229)

=
u2i
NA

(eβqVext − 1) (2.230)

and similarly

uV (xnd)− u(0)V =
u2i
ND

(eβqVext − 1) (2.231)

Therefore we can rewrite Eq. 2.227 as

j = q

[︃
DV

LV

(︁
uV (xnd)− u(0)V

)︁
tanh

xnc − xnd
LV

+
DC

LC

(︁
uC(xpd)− u(0)C

)︁
tanh

xpc − xpd
LC

]︃
(2.232)

= qu2i

[︃
DV

LVND

tanh
xnc − xnd

LV

+
DC

LCNA

tanh
xpc − xpd
LC

]︃
(eβqVext − 1) (2.233)

2.2.8 Shockley equation

Let’s assume that xnc − xnd ≫ LV and xpc − xpd ≫ LC (i.e., the contacts are far away from the
depletion region compared to the diffusion length L∗).9 Since tanhx ≈ 1 for x≫ 1, and Eq. 2.233
becomes

j = qu2i

[︃
DV

LVND

tanh
xnc − xnd

LV

+
DC

LCNA

tanh
xpc − xpd
LC

]︃
(eβqVext − 1) (2.234)

≈ qu2i

[︃
DV

LVND

+
DC

LCNA

]︃
(eβqVext − 1) (2.235)

9Though that would make for a very bad solar cell!
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which is called the Shockley equation [32, Eq. 19.78].

2.2.9 Under illumination

We turn on the lights. We introduce the effects of illumination by considering the case where all
generation is within the n-type region, and that it is spatially uniform. This modifies the minority
carrier continuity equation within the n-type region Eq. 2.116,

0 =
∂uV
∂t

= −1

q
∇⃗ · j⃗V −

uV − u(0)V

τV
+ g (2.236)

0 = −1

q
∇⃗ · j⃗V −

uV − (u
(0)
V + gτV )

τV
(2.237)

where g is the uniform generation in the n-type region (and has units of concentration per unit
time).

By performing the u(0)V ↦→ u
(0)
V + gτV substitution, we can reuse almost all of our work from the

previous (dark current) section. We therefore obtain

j = jV (xnd) + jC(xpd)

= q

[︃
DV

LV

(︁
uV (xnd)− u(0)V − gτV

)︁
tanh

xnc − xnd
LV

+
DC

LC

(︁
uC(xpd)− u(0)C

)︁
tanh

xpc − xpd
LC

]︃
(2.238)

= − (−q)u2i
[︃
DV

LVND

tanh
xnc − xnd

LV

+
DC

LCNA

tanh
xpc − xpd
LC

]︃
⏞ ⏟⏟ ⏞

j0

(eβqVext − 1) + (−q)DV

LV

gτV tanh
xnc − xnd

LV⏞ ⏟⏟ ⏞
jsc

(2.239)

= jsc − j0(eβqVext − 1)⏞ ⏟⏟ ⏞
jdark

(2.240)

which is the current generated by a solar cell under illumination.
A little explanation for the names – we’re at short circuit if and only if Vext = 0, which implies

j = jsc − j0(

1⏟ ⏞⏞ ⏟
eβq

0⏟⏞⏞⏟
Vext −1)⏞ ⏟⏟ ⏞
jdark

(2.241)

= jsc (2.242)

If there is no illumination jsc = 0 (since g = 0), so j = jsc − j0(eβqVext − 1) = j0(e
βqVext − 1).

37



2.2.10 Depletion region recombination

In many real devices, a large fraction of the generation or recombination occurs inside the de-
pletion region. We remove Assumption 3 (no recombination) and instead consider a nontrivial
recombination model in the depletion region. We perform this last refinement to the depletion
approximation model as a prelude to comparing it against a full drift-diffusion numerical model.

2.2.10.1 Shockley-Read-Hall recombination

A common type of nonradiative recombination is described by the Shockley-Read-Hall model.
Using [35, Eq. 4.4] as the starting point, the steady state recombination rate from conduction to
valence band through a trap10 with energy level Et is

USRH =
KCKV (uCuV −

u2
i⏟ ⏞⏞ ⏟

uC.1uV,1)

KC(uC + uC,1) +KV (uV + uV,1)
(2.243)

=
uCuV − u2i

K−1
V⏞⏟⏟⏞
τV

(uC + uC,1) +K−1
C⏞⏟⏟⏞
τC

(uV + uV,1)
(2.244)

=
uCuV − u2i

τV (uC + uC,1) + τC(uV + uV,1)
(2.245)

where Kk is the probability per unit time that a carrier from band k will be captured if the trap
is available to it (i.e., the trap must be empty in order to accept an electron from the CB, and
it must be full in order to accept a hole from the VB). The quantity uk,1 represents the carrier
density if the quasi-Fermi level of the band were equal to the trap energy level [36, Eq. 5.18]

uk,1 = uie
skβ(wi−E ′

t) (2.246)

where

E ′t = Et + kBT ln gt ·

⎧⎨⎩+1 acceptor-like traps

−1 donor-like traps
(2.247)

and Et is the actual energy level of the trap and gt is its degeneracy.
10Usually a crystal defect or an undesirable impurity atom.
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Remark 2. We note that in the limit uC ≫ uC,1 and τV uC ≫ τC(uV + uV,1),

USRH =
uCuV − u2i

τV (uC + uC,1) + τC(uV + uV,1)
(2.248)

≈ uV − u2i /uC
τV

(2.249)

In the high n-type doping limit we have uC ≈ u
(0)
C , and so we recover the simple relaxation

model for minority carriers (Eq. 2.115)

USRH =
uV − u2i /uC

τV
(2.250)

≈uV − u
2
i /u

(0)
C

τV
(2.251)

=
uV − u(0)V

τV
(2.252)

A similar argument can be made for the p-type doping limit.

2.2.10.2 Current

Given a recombination model (e.g., Eq. 2.245) for the depletion region, we can use Eq. 2.114b to
write

∂uC
∂t⏞⏟⏟⏞
0

= − sC⏞⏟⏟⏞
−1

1

q
∇⃗ · j⃗C + gC⏞⏟⏟⏞

−U

(2.253)

U =
1

q
∇⃗ · j⃗C (2.254)

Assuming current flows exclusively along the x-axis (without loss of generality), the fundamen-
tal theorem of calculus [37] gives us

U =
1

q
∇⃗ · j⃗C (2.255)

U =
1

q

∂jC
∂x

(2.256)
ˆ b

a

U dx =
1

q

[︁
jC(b)− jC(a)

]︁
(2.257)
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In particular, we can now relate the current density on either side of the depletion region by

q

ˆ xnd

xpd

U dx = jC(xnd)− jC(xpd) (2.258)

which replaces Eq. 2.216. We easily obtain the total current

j = jV (xnd) + jC(xnd) (2.259)

= jV (xnd) + jC(xpd) + q

ˆ xnd

xpd

U dx (2.260)

which allows us to amend Eq. 2.233

j = qu2i

[︃
DV

LVND

tanh
xnc − xnd

LV

+
DC

LCNA

tanh
xpc − xpd
LC

]︃
(eβqVext − 1) + q

ˆ xnd

xpd

U dx (2.261)

The evaluation of the
´
U dx term is often done numerically, since

ˆ
U dx =

ˆ
uCuV − u2i

τV (uC + uC,1) + τC(uV + uV,1)
dx (2.262)

=

ˆ
uie

β(w∗
C+qϕ(x)−wi)uie

−β(w∗
V +qϕ(x)−wi) − u2i

τV (uieβ(w
∗
C+qϕ(x)−wi) + uC,1) + τC(uie−β(w∗

V +qϕ(x)−wi) + uV,1)
dx (2.263)

=

ˆ
(eβ(w

∗
C−w∗

V ) − 1)u2i
τV (uieβ(w

∗
C+qϕ(x)−wi) + uC,1) + τC(uie−β(w∗

V +qϕ(x)−wi) + uV,1)
dx (2.264)

probably doesn’t have a clean analytic solution when ϕ(x) is a piecewise quadratic (Eq. 2.90).

2.2.10.3 Qualitative behaviour of
´
U dx term

For the case where the recombination in Eq. 2.261 is dominated by SRH processes, we can get
a qualitative sense of the

´
U dx term. We can (over)estimate USRH(x) it by assuming it to be

equal to its value somewhere around the middle of the junction. We choose this to be the point
xm where ϕ = ∆V

2
. Then

uk(xm) = uie
skβ[wi−qϕ(xm)−wk(xm)] (2.265)

= uie
skβ[wi−qϕ(x(maj,k)d)−wk(x(maj,k)d)]⏞ ⏟⏟ ⏞

umajority
k

eskβ[qϕ(x(maj,k)d)+wk(x(maj,k)d)−q

∆V/2⏟ ⏞⏞ ⏟
ϕ(xm)−

=wk(x(maj,k)d)⏟ ⏞⏞ ⏟
wk(xm) ] (2.266)

= umajority
k eskβ[qϕ(x(maj,k)d)−q∆V/2] (2.267)
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where x(maj,k)d is the edge of the depletion region on the side where band k’s carriers are the majority
carrier (i.e., x(maj,C)d = xnd and x(maj,V )d = xpd) and umajority

k = uk(x(maj,k)d) is the majority carrier
concentration.

Since

ϕ(x(maj,k)d) =

⎧⎨⎩0 k = V

∆V k = C
(2.268)

we have

uk(xm) = umajority
k eskβ[qϕ(x(maj,k)d)−q∆V/2] (2.269)

= umajority
k e−βq∆V/2 (2.270)

and so

USRH(xm) =
uC(xm)uV (xm)− u2i

τV (uC(xm) + uC,1) + τC(uV (xm) + uV,1)
(2.271)

=
umajority
C umajority

V e−βq∆V − u2i
τV (u

majority
C e−βq∆V/2 + uC,1) + τC(u

majority
V e−βq∆V/2 + uV,1)

(2.272)

Assuming that umajority
k e−q∆V/2 ≫ uk,1 and using umajority

C ≈ ND and umajority
V ≈ NA, we have

USRH(xm) ≈
umajority
C umajority

V e−βq∆V − u2i
τV (u

majority
C e−βq∆V/2) + τC(u

majority
V e−βq∆V/2)

(2.273)

=
umajority
C umajority

V e−βq∆V/2 − u2i eβq∆V/2

τV u
majority
C + τCu

majority
V

(2.274)

≈ NANDe
−βq∆V/2 − u2i eβq∆V/2

τVND + τCNA

(2.275)

Since

∆V =

Vbi⏟ ⏞⏞ ⏟
1

βq
ln
NAND

u2i
−Vext (2.276)

eβq∆V =
NAND

u2i
e−βqVext (2.277)

eβq∆V/2 =

√
NAND

ui
e−βqVext/2 (2.278)
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Figure 2.7: Comparison of the peak |USRH| in the depletion region of a silicon pn junction between
the depletion approximation, a full numerical drift-diffusion model (Simudo), and the qualitative
formulas Eq. 2.282 and 2.287. The parameters are described in Figure 2.8. The qualitative result
Eq. 2.282 is valid at forward bias but exponentially wrong at reverse bias, while the qualitative
result Eq. 2.287 is valid only at reverse bias.

we get

USRH(xm) ≈
NANDe

−βq∆V/2 − u2i eβq∆V/2

τVND + τCNA

(2.279)

=
NAND

ui√
NAND

eβqVext/2 − u2i
√
NAND

ui
e−βqVext/2

τVND + τCNA

(2.280)

=
ui
√
NAND(e

βqVext/2 − e−βqVext/2)

τVND + τCNA

(2.281)

=
2ui
√
NAND

τVND + τCNA

sinh(βqVext/2) (2.282)

As shown in Figure 2.7, this qualitative result is valid only at forward bias. This is because the
assumption that umajority

k e−q∆V/2 ≫ uk,1 is violated at reverse bias. We need to derive a different
result for Vext < 0.

We note that
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umajority
C umajority

V e−βq∆V ≈ NANDe
−βq∆V (2.283)

= NAND
u2i

NAND

eβqVext (2.284)

= u2i e
βqVext (2.285)

Adding the assumption that umajority
k e−q∆V/2 ≪ uk,1, we can write

USRH(xm) =

u2
i e

βqVext⏟ ⏞⏞ ⏟
umajority
C umajority

V e−βq∆V −u2i
τV (u

majority
C e−βq∆V/2⏞ ⏟⏟ ⏞

≪uC,1

+uC,1) + τC(u
majority
V e−βq∆V/2⏞ ⏟⏟ ⏞

≪uV,1

+uV,1)
(2.286)

≈ u2i
τV uC,1 + τCuV,1

(eβqVext − 1) (2.287)

We can thus approximate Eq. 2.261 as

j = j0(e
βqVext − 1) + qW

⎧⎨⎩
2ui

√
NAND

τV ND+τCNA
sinh(βqVext/2) Vext > 0

u2
i

τV uC,1+τCuV,1
(eβqVext − 1) Vext < 0

(2.288)

where j0 = qu2i

[︃
DV

LV ND
tanh xnc−xnd

LV
+ DC

LCNA
tanh

xpc−xpd

LC

]︃
. Note that Eq. 2.288 vastly overestimates

the current produced in the depletion region by assuming that the generation/recombination is at
its maximum value throughout the entire depletion region.

In the limit βqVext/2≫ 1, we can further write

j = j0(e
βqVext − 1) + qW

2ui
√
NAND

τVND + τCNA

(eβqVext/2 − 1) (2.289)

and note that this j(Vext) curve corresponds to two diodes placed in parallel with “ideality factors”
of 1 and 2 respectively. The ideality factor of a dark current term of the form eβqVext/n is n. Real
devices often have non-integer ideality factors between 1 and 2 [38], but larger ideality factors are
possible [39].
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2.2.11 Solution quality

The depletion region approximation is great for pedagogical purposes. This model provides a
precious shard of intuition on how semiconductor devices work qualitatively. However, it is very
limited:

1. We assumed perfect Ohmic contacts (S = 0). They’re usually not.

2. We assumed the optical generation to be spatially constant. It’s usually not.

3. The relaxation time approximation may not be accurate in high injection, and may require
Shockley-Read-Hall or Auger recombination.

4. We assumed the same semiconductor is on both sides of the junction, i.e., it is a homojunction.
Some devices use heterojunctions.

5. We assumed the material properties to be uniform. Doping might not be perfectly sharp at
the junction. Some materials are alloys, and their composition may vary spatially (inten-
tionally or not).

6. We assumed there are only two bands (conduction and valence), which excludes intermediate
band materials.

Some of these limitations can be overcome, to some extent, by refining the model. However,
developing a more advanced model usually requires additional assumptions, and the resulting
model (and its assumptions) often need to be validated against a higher source of truth, such as a
numerical solver.

Most of these limitations cannot be overcome analytically. To predict electrical or other mi-
croscopic properties for a larger class of materials/devices than considered in this derivation, we
require a numerical solver. One way of solving the drift-diffusion equations (Eq. 2.114) and Pois-
son’s equation (Eq. 2.56) numerically is the finite element method, to which we give an introduction
in Chapter 4. Finally, we introduce our device model called Simudo in Chapter 5.

To close this chapter, we present a direct comparison between the depletion approximation
(including SRH recombination in the depletion region) and Simudo in Figures 2.8 and 2.9. Despite
significant differences in uk and E⃗ near the depletion region, the depletion approximation succeeds
in finding total currents within 2–10% of Simudo as shown in Figure 2.10. Semianalytic models
like the depletion approximation can be a powerful way to quickly estimate device properties (such
as the jtotal(Vext) curve or solar cell efficiency). A semianalytic model for intermediate band solar
cell efficiency was developed in [25] with the help of Simudo for validation.
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Figure 2.8: Comparison of uk, jk, E⃗ for the depletion approximation (including SRH recombination
via Eqs. 2.245 and 2.257) versus a full numerical drift-diffusion model (Simudo). The depletion
region is shown in red. The device is a silicon pn junction with ND = NA = 5 × 1015 cm−3 at
T = 300 K with minority carrier lifetimes τC = τV = 2 × 10−10 s and SRH trap energy level
Et = EV + 0.5525 eV. The depletion approximation solution underestimates the decline of the
majority carrier into the depletion region and ends up significantly underestimating the magnitude
of the generated current as a result.
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Figure 2.9: Comparison of uk, jk, E⃗ for the depletion approximation (including SRH recombination
via Eqs. 2.245 and 2.257) versus a full numerical drift-diffusion model (Simudo) at larger-magnitude
negative bias Vext. The conditions and parameters are the same as in Figure 2.8. The law of the
junction fails to determine the carrier densities inside and at the edges of the depletion region,
so the minority carrier densities and currents in the quasi-neutral regions are incorrect. None of
that ends up mattering because the vast bulk of the recombination happens in the middle of the
depletion region, which is why the “depletion approximation” currents still agree with Simudo.
Excluding the depletion region

´
USRH dx term leads to vastly underestimating the total current

at reverse bias as can be seen in Figure 2.10.
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Figure 2.10: Comparison of jtotal for the depletion approximation (with and without SRH recom-
bination in the depletion region via Eq. 2.261) versus Simudo. The conditions and parameters
are the same as in Figure 2.8. At reverse bias, most of the current is generated in the depletion
region and so the no-SRH depletion approximation solution vastly underestimates the total cur-
rent. As Vext increases more of the current is generated in the quasi-neutral regions rather than
in the (shrinking) depletion region, so the no-SRH depletion approximation solution becomes bet-
ter. The depletion approximation solution including SRH yields total currents that are not just
qualitatively correct but are only 2–10% away from the true (numerical drift-diffusion) solution.
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Chapter 3

A more formal look at the law of the
junction

Having powered through the depletion region approximation in sections 2.2.4.1 and 2.2.4.2 and
convinced themselves of its validity, the mathematically-inclined reader may have grimaced at our
rather informal justifications of the law of the junction. As a penance, we derive an exact solution
to the drift-diffusion equations within the depletion region (under the simplifying assumptions of
no recombination or generation within this region), and we find sufficient conditions for the validity
of the law of the junction. A discussion of similar issues is in [3], but ours is a bit more general
and hopefully more approachable to the curious but novice reader.

To simplify the notation, we shall focus on the valence band carrier and write p(x) ≡ uV (x) for
the rest of this section. The differential equation we will solve is then

j⃗V = qµV pE⃗ − q Dp⏞⏟⏟⏞
µV /βq

∇⃗p (3.1)

jV
µV

= qpE − 1

β

dp

dx
(3.2)

Since we are assuming the lack of generation or recombination in the depletion region, jV must
be constant (by the continuity equation).

3.1 Derivation of exact drift-diffusion in depletion region with-

out recombination or generation

Theorem 1. The solution p(x) to the boundary value problem
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jV
µV

= qp(x)E(x)− 1

β

dp(x)

dx
(3.3)

where p(xnd) and p(xpd) are fixed, E(x) is given by Eq. 2.78, and jV , µV , q, β are constants is given
by

p(xnd) + ζξn erf
Wn

ξn
= e−βq∆V

(︂
p(xpd)− ζξp erfi

Wp

ξp

)︂
(3.4)

where

erf(x) =
2√
π

ˆ x

0

e−t2 dt, ξn =

√︃
2ε

βq2ND

,

erfi(x) =
2√
π

ˆ x

0

et
2

dt, ξp =

√︃
2ε

βq2NA

,

(3.5)

and ζ =

√
π

2

βjV
µV

. (3.6)

Proof. We have a differential equation of the form

dy

dx
+ P (x)y = Q(x) (3.7)

We need to use integrating factor, defined as h(x) = e
´ x P (x) dx so that d

dx
h(x) = P (x)h(x), and

so that

d

dx
(hy) = (y

d

dx
h⏞⏟⏟⏞

Ph

+h
d

dx
y) (3.8)

= (yPh+ h
dy

dx
) (3.9)

= (Py +
dy

dx⏞ ⏟⏟ ⏞
Q(x)

)h (3.10)
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We then obtain solution by integrating

d

dx
(hy) = Qh (3.11)

hy =

ˆ x

Q(x)h(x) dx (3.12)

y =
1

h

ˆ x

Q(x)h(x) dx (3.13)

We identify P (x) = −βqE(x) and Q(x) = −β jV
µV

. Then
´ x

P (x) dx =
´ x−βqE(x) dx =

βqϕ(x), and so

p(x) = −e−βqϕ(x)

(︃ ˆ x

β
jV
µV

eβqϕ(x) dx+ const.
)︃

(3.14)

= e−βqϕ(x)

(︃
c− β jV

µV

ˆ x

eβqϕ(x) dx

)︃
(3.15)

for some constant c. We fix lower endpoint of the integral,

p(x) = e−βqϕ(x)

(︃
c− β jV

µV

ˆ x

xpd

eβqϕ(x) dx

)︃
(3.16)

and plug in x = xpd, resulting in

p(xpd) = e−βqϕ(xpd)

(︃
c− β jV

µV
���

���
��⌃0ˆ xpd

xpd

eβqϕ(x) dx

)︃
(3.17)

p(xpd) = ce−βqϕ(xpd) (3.18)

which yields c = p(xpd)e
βqϕ(xpd). Plugging in x = xnd, we obtain

p(xnd) = p(xpd)e
βq
(︁
ϕ(xpd)−ϕ(xnd)

)︁
− β jV

µV

e−βqϕ(xnd)

ˆ xnd

xpd

eβqϕ(x) dx (3.19)

Using ϕ(xpd) = 0 and ϕ(xnd) = ∆V ,

p(xnd) = e−βq∆V

(︃
p(xpd)− β

jV
µV

ˆ xnd

xpd

eβqϕ(x) dx

)︃
(3.20)
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We now focus our efforts on evaluating the integral. We recall from Eq. 2.90,

ϕ(x)− ϕ(xpd) =
q

ε

1

2
NA(x− xpd)2 x ∈ [xpd, xJ ] (3.21a)

ϕ(x)− ϕ(xJ) =
q

ε

1

2
ND

[︂
W 2

n − (xnd − x)2
]︂

x ∈ [xJ , xnd] (3.21b)

where Wn = xnd − xJ and Wp = xJ − xpd.
We rewrite the second line in terms of ϕ(xpd). For x ∈ [xpd, xJ ],

ϕ(x)− ϕ(xpd) =
(︁
ϕ(x)− ϕ(xJ)

)︁
+
(︁
ϕ(xJ)− ϕ(xpd)

)︁
(3.22)

=
q

ε

1

2

[︄
ND

[︂
(xnd − xJ)2 − (xnd − x)2

]︂
+NA(xJ − xpd)2

]︄
(3.23)

=
q

ε

1

2

[︄
ND

[︂
W 2

n − (xnd − x)2
]︂
+NAW

2
p

]︄
(3.24)

We therefore have piecewise function

ϕ(x)− ϕ(xnd) =
q

ε

1

2

⎧⎨⎩NA(x− xpd)2 x ∈ [xpd, xJ ]

ND

[︂
W 2

n − (xnd − x)2
]︂
+NAW

2
p x ∈ [xJ , xnd]

(3.25)

We must integrate over x ∈ [xpd, xnd]. We split up the integral into two parts, x ∈ [xpd, xJ ] and
x ∈ [xJ , xnd]. We obtain

ˆ xJ

xpd

eβqϕ(x) dx (3.26)

=

ˆ xJ

xpd

exp

[︄
β
q2

ε

1

2

[︃
NA(x− xpd)2

]︃]︄
dx (3.27)

=

ˆ xJ

xpd

e

(︁
(x−xpd)/ξp

)︁2
dx (3.28)

where ξp =
√︂

2ε
βq2NA

and ξn =
√︂

2ε
βq2ND

. Using erfi(x) ≡ 2√
π

´ x
0
ex

2
dx and the substitution u =
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(x− xpd)/ξp,

=

ˆ xJ

xpd

e

(︁
(x−xpd)/ξp

)︁2
dx (3.29)

=

[︃√
π

2
ξp erfi

x− xpd
ξp

]︃xJ

x=xpd

(3.30)

=

√
π

2
ξp erfi

xJ − xpd
ξp

(3.31)

=

√
π

2
ξp erfi

Wp

ξp
(3.32)

Now we do the second part over x ∈ [xJ , xnd],

ˆ xnd

xJ

eβqϕ(x) dx (3.33)

=

ˆ xnd

xJ

exp

[︄
β
q2

ε

1

2

[︃
ND

[︂
W 2

n − (xnd − x)2
]︂
+NAW

2
p

]︃]︄
dx (3.34)

= eβ
q2

ε
1
2

(︁
NDW 2

n+NAW 2
p

)︁ ˆ xnd

xJ

exp

[︄
β
q2

ε

1

2

[︃
− (xnd − x)2ND

]︃]︄
dx (3.35)

= eW
2
n/ξ

2
n+W 2

p /ξ
2
p

ˆ xnd

xJ

e−
(︁
(xnd−x)/ξn

)︁2
dx (3.36)

= e

βq∆V⏟ ⏞⏞ ⏟
W 2

n/ξ
2
n +W 2

p /ξ
2
p

[︃√
π

2
(−ξn) erf

xnd − x
ξn

]︃xnd

x=xJ

(3.37)

= eβq∆V

√
π

2
ξn erf

Wn

ξn
(3.38)

where we used erf(x) ≡ 2√
π

´ x
0
e−x2

dx, the substitution u = (xnd − x)/ξn, and the equality

W 2
n/ξ

2
n +W 2

p /ξ
2
p =

βq2

2ε

(︂
W 2

pNA +W 2
nND

)︂
(3.39)

= βq∆V (3.40)

from Eq. 2.110.
Therefore

ˆ xnd

xpd

eβqϕ(x) dx =

√
π

2

(︃
ξp erfi

Wp

ξp
+ eβq∆V ξn erf

Wn

ξn

)︃
(3.41)
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p(xnd) = e−βq∆V

(︃
p(xpd)− β

jV
µV

ˆ xnd

xpd

eβqϕ(x) dx

)︃
(3.42)

= e−βq∆V p(xpd)− β
jV
µV

√
π

2

(︃
ξp e

−βq∆V erfi
Wp

ξp
+ ξn erf

Wn

ξn

)︃
(3.43)

or

p(xnd) + ζξn erf
Wn

ξn
= e−βq∆V

(︂
p(xpd)− ζξp erfi

Wp

ξp

)︂
(3.44)

where ζ =
√
π
2

βjV
µV

has units of carrier concentration per length, i.e. cm−4.

3.2 Interpretation

Looking at the p side of the depletion region and translating the coordinate system such that
xpd = 0 (instead of xJ = 0 as usual), the drift current is then

jV,drift = qµp

E(x)⏟ ⏞⏞ ⏟
(−ax) p(x) (3.45)

We now look for the point where the drift current takes its maximum value

0 =
djV,drift

dx
(3.46)

0 =
d

dx
(px) (3.47)

0 = p+ x
dp

dx
(3.48)

From the differential equation, we obtain

dp

dx
= −βaqpx− β jV

µV

(3.49)

and so

0 = p+ x
dp

dx
(3.50)

0 = p+ x

(︃
− βaqpx− β jV

µV

)︃
(3.51)

0 = (1− βaq x2)p− β x jV
µV

(3.52)
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At equilibrium jV = 0, and

0 = (1− βaq x2) p⏞⏟⏟⏞
>0

(3.53)

0 = (1− βaq x2) (3.54)

xK ≡
√︃

1

βaq
(3.55)

This defines the length scale on which the jV ≈ 0 approximation may not be good since the
electric field may not be strong enough compared to jV . This length scale is precisely ξn, ξp, up to

a factor of
√︂

1
2
.

3.3 Revised law of the junction

We now process this result into an actual modified statement of the law of the junction. At
equilibrium (dark), we most definitely have constant electrochemical potential throughout the
device, and so

u
(0)
V (xpd) = u

(0)
V (xnd)e

βqVbi (3.56)

because

u
(0)
V (xpd)

u
(0)
V (xnd)

= ��uie
β(��wi−�w−qϕ(xpd))

��uie
β(��wi−�w−qϕ(xnd))

(3.57)

= eβq(ϕ(xnd)−qϕ(xpd)) (3.58)

= eβqVbi . (3.59)

We further assume that uV (xpd) ≈ u
(0)
V (xpd) by quasi-neutrality. Then plugging Eq. 3.56 into

Eq. 3.4 and using ζ = β jV
µV

√
π
2

(Eq. 3.6), µV = DV βq (Eq. 1), and ∆V = Vbi − Vext (Eq. 2.112),
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uV (xnd) + ζξn erf
Wn

ξn
= e−βq∆V

(︂
uV (xpd)− ζξp erfi

Wp

ξp

)︂
(3.60)

uV (xnd) + ζξn erf
Wn

ξn
= e−βq∆V

(︂
u
(0)
V (xnd)e

βqVbi − ζξp erfi
Wp

ξp

)︂
(3.61)

uV (xnd) = u
(0)
V (xnd)e

βqVbie−βq∆V − ζ

[︄
e−βq∆V ξp erfi

Wp

ξp
+ ξn erf

Wn

ξn

]︄
(3.62)

uV (xnd) = u
(0)
V (xnd)e

βqVext − jV
DV q

Λ (3.63)

we obtain the modified statement of the law of the junction, where

Λ =

√
π

2

[︄
e−βq∆V ξp erfi

Wp

ξp
+ ξn erf

Wn

ξn

]︄
(3.64)

We may compare Eq. 3.63 against the usual statement of the law of the junction (Eq. 2.152),

uV (xnd) = u
(0)
V (xnd)e

βqVext (3.65)

At equilibrium, Eq. 3.63 and Eq. 2.152 agree with each other, but they deviate as jV becomes
large. We could ask the question: how high can jV become before the Λ correction term in
uV (xnd) becomes too large? However, Eq. 3.63’s uV (xnd) depends on jV and jV obviously depends
on uV (xnd). This circular dependency makes it difficult to estimate the magnitude of the correction
term. In the next section, we break this cycle and derive an error bound on jV that does not depend
on itself.

3.4 jV (Vext) curve and validity bound for law of the junction

To get an actual current (assuming uniform illumination and zero surface recombination velocity,
both of which are optimistic for solar cell efficiency and pessimistic for the correctness of the law
of the junction), we use Eq. 2.222

jV (xnd) = q
DV

Lp

(︁
uV (xnd)− u(0)V − τg0

)︁
tanh

xnc − xnd
Lp

(3.66)

= q
DV

Lp

(︁
u
(0)
V (xnd)(e

βqVext − 1)− τg0 −
jV
DV q

Λ
)︁
tanh

xnc − xnd
Lp

(3.67)
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We solve for jV ,

jV

(︂
1 +

Λ

Lp

tanh
xnc − xnd

Lp

)︂
= q
DV

Lp

(︁
u
(0)
V (xnd)(e

βqVext − 1)− τg0
)︁
tanh

xnc − xnd
Lp

(3.68)

jV =
qDV

Lp

(︁
u
(0)
V (xnd)(e

βqVext − 1)− τg0
)︁
tanh xℓn−xnd

Lp

1 + Λ
Lp

tanh xnc−xnd

Lp

(3.69)

where we note that the numerator is exactly jV if using the law of the junction. Then

jexact over depletion region
V =

jusing law of the junction
V

1 + Λ
Lp

tanh xnc−xnd

Lp

(3.70)

We note that tanh(x) ∈ [0, 1] if x ≥ 0. We recall Eq. 3.64 and we also note that erfi Wp

ξp
≤

e(Wp/ξp)2 < eβq∆V and that erf(x) ∈ [0, 1] if x ≥ 0. Then

0 ≤ Λ <
√
π
ξp + ξn

2
(3.71)

from which it follows that

jexact over depletion region
V ≤ jusing law of the junction

V . (3.72)

The relative error between the currents yielded by the exact drift-diffusion solution and by the
law of the junction is then bounded by

0 ≤ jusing law of the junction
V

jexact over depletion region
V

− 1 =
Λ

Lp

tanh
xnc − xnd

Lp

(3.73)

<

√
π

2

ξp + ξn
Lp

(3.74)

Remark 3. The condition
√
π
2

ξp+ξn
Lp
≪ 1 given by 3.74 is a sufficient condition for the validity of

the law of the junction, but not by any means a tight bound.

3.5 Estimating validity in typical devices

We can rewrite Eq. 3.74 by substituting in ξp, ξn.

ξp + ξn
Lp

=

√︂
2ε
βq2

(︂
1√
NA

+ 1√
ND

)︂
Lp

(3.75)
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For extra generality, we now find a bound in terms of Wdepletion that does not depend directly
on NA or ND. We recall from Eq. 2.106 that

Wdepletion =

√︄
2Vbiε

q
(N−1

A +N−1
D ) (3.76)

ξp + ξn
Wdepletion

=

√︂
2ε
βq2

(︂
1√
NA

+ 1√
ND

)︂
√︂

2Vbiε
q

(N−1
A +N−1

D )
(3.77)

=

√︃
1

βqVbi

√
NA +

√
ND√

NA +ND

(3.78)

=

√︃
1

βqVbi

(︄
1√︁

1 +NA/ND

+
1√︁

1 +ND/NA

)︄
(3.79)

=

√︃
1

βqVbi

(︄
1√︁

1 + 1/r
+

1√
1 + r⏞ ⏟⏟ ⏞

f1(r)

)︄
(3.80)

where r = NA/ND.
The function f1(r) attains its maximum

√
2 at r = 1 over the interval r ∈ (0,∞) (see Lemma 2),

so we can say

ξp + ξn
Wdepletion

=

√︃
1

βqVbi
f1(r) (3.81)

≤
√︃

2

βqVbi
(3.82)

We rewrite the bound as

jusing law of the junction
V

jexact over depletion region
V

− 1 ≤
√
π

2

ξp + ξn
Lp

(3.83)

=

√
π

2

Wdepletion

Lp

ξp + ξn
Wdepletion

(3.84)

≤
√
π

2

Wdepletion

Lp

√︃
2

βqVbi
(3.85)

Typically Wdepletion ≪ Lp, but we instead consider a pessimistic case in which Lp = 10Wdepletion.
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In typical devices βqVbi ≳ 30, so

jusing law of the junction
V

jexact over depletion region
V

− 1 ≤
√
π

2

Wdepletion

Lp

√︃
2

βqVbi
(3.86)

≤
√
π

2
(1/10)

√︃
2

30
(3.87)

≈ 0.023 (3.88)

which means that using the law of the junction yields at most a 2.3% error in the obtained current.
In a more typical case where Wdepletion ≪ Lp, the error from using the law of the junction would

be much less than 1%, showing why it is so widely used.
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Chapter 4

Finite element method

The finite element method (FEM) is a computational method for solving systems of PDEs. We
introduce the basics of the method here and refer the reader to many deeper introductions [40,
41]. Well-posed systems of PDEs have a domain Ω and boundary Γ. FEM divides Ω into cells,
which are generally segments (1D), triangles (2D), or tetrahedra (3D). The solution to the PDEs
is approximated by superpositions of local basis functions, which are each nonzero in only a small
number of cells. The key difference between the FEM and finite difference methods is that FEM
essentially averages over the cells to get the best approximation over a region rather than at
individual points. We illustrate its key features by considering a solution of the Poisson equation.

4.1 Poisson equation

We wish to solve the equation

∇2u = f, (4.1)

over a domain Ω with boundary Γ, where u is the function we want to find and f is a given function
of space. Throughout Chapter 4, we will use u to denote a generic function that we wish to solve
for (rather than the carrier concentration).

We consider standard Dirichlet and Neumann boundary conditions (BCs), which specify the
value of u and its gradient ∇⃗u at the boundary, respectively. Suppose that the BCs we wish to
apply are

u
⃓⃓
ΓD

= uBC (4.2a)

∇⃗u · n̂
⃓⃓
ΓN

= g (4.2b)
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where n̂ is the ΓN surface normal. The Dirichlet condition applies on ΓD, and the Neumann
condition applies on ΓN . ΓD and ΓN cannot overlap.

The core idea of FEM is to take a weighted average of Eq. 4.1 using a family of spatially highly
localized weight functions {φi} called test functions. This manipulation results in an equation
called a weak form, imposing a weaker condition on the solution u than the strong form Eq. 4.1.
To make a weak form, we take the spatial average of Eq. 4.1 with each test function φi to give the
conditions

0 =

ˆ
(∇2u)φi dv −

ˆ
f φi dv (4.3)

where the integrals are taken over the domain Ω.
For convenience, we introduce the notation

´
Ω
≡
´
dv, and write

0 =

ˆ
Ω

φi (∇2u)−
ˆ
Ω

φi f. (4.4)

FEM seeks a solution that satisfies the weak form and can be written as u =
∑︁

j ajψj for a
set of basis functions {ψj}, such that u = uBC on ΓD. There are many choices of families of basis
functions {ψj}, with various mathematical properties. An important property of basis functions
is that they are highly localized, i.e., take nonzero values inside only one cell or a small number of
adjacent cells. For this example, we will use continuous piecewise polynomials, named “Lagrange”
or “Continuous Galerkin” (CG) basis functions, as shown in Fig. 4.1. In most cases (including this
example), the family of test functions φi in Eq. 4.4 is precisely the family of basis functions ψj

(without the ones that are nonzero on the ΓD boundary).
We revisit the first term in Eq. 4.4. As ∇⃗u is discontinuous across cells, ∇2u is made meaningful

by integrating by parts, using
ˆ
Ω

σ⃗ · ∇⃗a+
ˆ
Ω

a(∇⃗ · σ⃗) =
˛
Γ

σ⃗a · n̂. (4.5)

Then with σ⃗ = ∇⃗u and a = φi in the first term, the condition becomes

0 =

˛
Γ

φi (∇⃗u · n̂)−
ˆ
Ω

∇⃗φi · ∇⃗u−
ˆ
Ω

φi f (4.6)

Noting that the boundary is made up of Neumann and Dirichlet parts and recalling Eq. 4.2b,

60



the first term of Eq. 4.6 becomes
˛
Γ

φi (∇⃗u · n̂) =
ˆ
ΓN

φi (∇⃗u · n̂)⏞ ⏟⏟ ⏞
g

+

ˆ
ΓD

��>
0

φi (∇⃗u · n̂) (4.7)

=

ˆ
ΓN

φi g , (4.8)

where we eliminated the Dirichlet boundary term by ensuring that the test functions φi are zero
on the ΓD boundary. This process yields our final weak form,

0 =

ˆ
ΓN

φi g −
ˆ
Ω

∇⃗φi · ∇⃗u−
ˆ
Ω

φi f. (4.9)

As the Neumann boundary condition g enters “naturally” through the weak form, it is called a
natural boundary condition. On the other hand, the Dirichlet boundary condition must be imposed
upon the solution space of u directly, and it is called an essential boundary condition.

Remark 4. Dirichlet/Neumann BCs aren’t always matched up in this way with essential/natural
BC application. For the mixed method in Section 5.3.2, the opposite occurs: the Dirichlet BC
enters as a natural BC, and the Neumann BC enters as an essential BC.

Plugging φi ↦→ ψi and u ↦→
∑︁

j ajψj into Eq. 4.9, we obtain

0 =

˛
ΓN

ψi g −
ˆ
Ω

∇⃗ψi · ∇⃗
(︂∑︂

j

ajψj

)︂
−
ˆ
Ω

ψi f

0 =
∑︂
j

aj

[︃ˆ
Ω

∇⃗ψi · ∇⃗ψj

]︃
⏞ ⏟⏟ ⏞

Mij

−
[︃˛

ΓN

ψi g +

ˆ
Ω

ψi f

]︃
⏞ ⏟⏟ ⏞

bi

(4.10)

which forms a sparse1 linear system for the aj’s, which could be written as Ma⃗ = b⃗. In the FEM
literature, M is often called the “stiffness matrix”, and b⃗ is called the “mass vector”. Both M and b⃗
are evaluated numerically, and the resulting linear system is solved for a⃗. The essential (Dirichlet)
boundary condition Eq. 4.2a is applied by manually forcing the appropriate aj’s to satisfy the
boundary values uBC, and removing the corresponding columns j from the matrix, as well as the
corresponding rows from M , a⃗, and b⃗. Note that the rows removed from the b⃗ vector are precisely
those corresponding to test functions that would have been nonzero on the ΓD boundary, which
ensures the condition used in Eq. 4.7.

Remark 5. Families of basis functions {ψj} are typically “nodal”. That is, each basis function ψj

is associated to a point in space pk called a node, such that ψj(pk) = δjk. This representation
1Since the basis functions {ψj} and {φi} and their derivatives are highly localized.
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simplifies the application of essential boundary conditions – if the boundary condition dictates
that u

⃓⃓
pk

= ck, then the coefficient ak is equal to ck, and imposes no further restrictions on other
coefficients aj.

(a)

(b)

(c)

Figure 4.1: Examples of 1-dimensional basis functions, focusing on those that are nonzero in
the central cell. Faint lines show basis functions in nearby cells. (a) Continuous Galerkin basis
functions of order 1 (CG1), i.e., piecewise linear functions. Note that each basis function is nonzero
in two cells. (b) Discontinuous Galerkin basis functions of order 1 (DG1), i.e., piecewise linear
functions with no continuity requirement at cell boundaries. Note that each basis function is
nonzero only in one cell. (c) Example of reproducing a function as a sum of CG1 basis functions.

4.2 Nonlinear Poisson equation

In the previous section we considered the linear problem ∇2u = f , which reduced to a set of linear
equations for the aj. If the RHS were to depend nonlinearly on u, the resulting set of equations
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would also be nonlinear. Consider the modified equation

∇2u = (1 + u2)f, (4.11)

and assume the same boundary conditions. Following the procedure as for the standard Poisson
equation yields the weak form

0 =

ˆ
ΓN

φi g −
ˆ
Ω

∇⃗φi · ∇⃗u−
ˆ
Ω

φi (1 + u2)f. (4.12)

Plugging u =
∑︁

j ajψj into Eq. 4.12 yields −
´
Ω
φi

(︂∑︁
j ajψj

)︂(︂∑︁
j ajψj

)︂
f for the last term,

which is nonlinear as it contains a product of aj’s.
There are multiple methods to linearize Eq. 4.12. We sketch the Newton iterative method used

in Simudo. The idea is to first replace u by u− + δu in the weak form Eq. 4.12, where u− is the
previous solution and δu is the new dynamical variable being solved for. Then, we pretend that
δu is infinitesimal and drop all higher order terms such as (δu)2, yielding a linear system in δu.
Applying this procedure to the weak form above, we obtain

0 =

ˆ
ΓN

φi g −
ˆ
Ω

∇⃗φi · ∇⃗(u− + δu)−
ˆ
Ω

φi

(︁
1 + (u− + δu)2

)︁
f

≈
ˆ
ΓN

φi g −
ˆ
Ω

∇⃗φi · ∇⃗u− −
ˆ
Ω

∇⃗φi · ∇⃗(δu)

−
ˆ
Ω

φi (1 + u2−)f −
ˆ
Ω

φi 2(δu)u−f (4.13)

which we solve for δu the standard way. We then update u− ← u−+δu and iterate to convergence.
Note that inside Simudo, the linearized form Eq. 4.13 is derived automatically using FEniCS
symbolic tools.
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Chapter 5

Device model paper

5.1 Introduction

As noted in the Statement of original contributions, this chapter contains a reproduction of our
published paper describing the device model[1], with minor adjustments.

Device models are essential components of the development of semiconductor devices, from
transistors to solar cells to lasers. Standard semiconductor device models, such as Synopsys Sen-
taurus, treat materials with 0, 1, or 2 bands (i.e., dielectrics, metals, and semiconductors, respec-
tively) along with an electrostatic potential. At a given location in a given material, each band
has its own carrier concentration, with particle motion given by diffusion and electric-field-induced
drift. Since the electric field itself depends on particle motion, the resulting Poisson/drift-diffusion
(PDD) equations are nonlinear and require numerical solution in the general case [42, 43, 26, 44,
45].

A new class of materials, called intermediate band (IB) materials, has been developed over
the last 20 years with the goal of improving solar cell efficiency and producing effective infrared
photodetectors [9, 17, 46, 47, 48]. These IB materials are like semiconductors except they have
an extra band of allowed electronic energy levels above the valence band (VB) and below the
conduction band (CB), as shown in Fig. 5.1. Such a band structure permits optical absorption
from VB to IB and from IB to CB, which is the key to the increased solar cell efficiency [9]. It is
also possible to consider multiple IBs, though such materials have not yet been realized in practice
[49].

Where IB devices have been made, they have not generally been highly efficient, which is
believed to be largely due to fast nonradiative recombination processes [17, 50, 12, 11, 46, 47, 48,
24]. It has not been possible, however, to perform standard device modeling to optimize these
devices, to determine the ideal layer thicknesses, doping levels, etc., since standard semiconductor
device models do not allow the possibility of treating a third band. Therefore, we do not know what

64



p IB n
p contact n contact

p

Figure 5.1: Band diagram of illuminated 1D intermediate band device at short circuit. Device
structure of p-IB-n device shown at top, and the IB material has an extra band contained entirely
inside the semiconductor band gap. Solid lines show the band edge energies EC , EV and the IB
energy EI . Dashed lines show the quasi-Fermi levels wC , wV , and wI . Parameters as in Sec. 5.4.3.

efficiencies existing IB materials could permit, if they were optimized. Interpreting experiments
on IB materials and designing the best devices require device modeling capabilities.

In order to describe the basic physics of IB devices, one must be able to describe

1. Optical processes between CB, VB, and IB, with rates dependent on IB filling fraction f ,

2. Nonradiative processes between CB, VB, and IB, with rates dependent on f ,

3. Carrier transport within the IB,

4. Junctions with standard semiconductors.

There is a large array of standard numerical semiconductor device models based on the coupled
Poisson and carrier-continuity equations, including general purpose ones, such as Synopsys Sentau-
rus and Silvaco, as well as more specialized models such as Crosslight, which includes modelling of
quantum well physics and a coupled treatment of carrier-density dependent optics for lasers, and
TiberCAD [51]. Nextnano++ also includes features specific to quantum structures and can solve
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Table 5.1: Comparison of selected device models
IB optics with
photofilling

IB nonradiative
processes

IB
transport

Junctions 2D

Sentaurus N Y limited Y Y
PC1D [53] N Y N Y N
SCAPS [56] Y Y N Y N
TiberCAD [51] N Y Y Y Y

Martí [58] N N Y N N
Strandberg [27] Y N Y N N
Tobias [59], Yoshida [60] Y N Y Y N

Simudo Y Y Y Y Y

an 8-band k.p model self-consistently with the Poisson and drift-diffusion calculations [52]. There
are also more focused ones, such as PC1D [53, 54], AFORS-HET[55], SCAPS [56], and Solcore [57],
which are 1D models focused on solar cells. Many of these models allow treatment of deep-lying
states inside the semiconductor band gap, primarily as Shockley-Read-Hall (SRH) trapping and
recombination centers [35]. Sentaurus and PC1D, for example, do not permit optical generation
from the deep-lying states. SCAPS does permit both thermal and optical processes, but does not
consider transport of carriers inside the defect band. We do not attempt a full characterization of
all the available device models, but Table 5.1 shows which of these requirements are met by these
device models.

There have been a number of device models developed specifically for IB materials, mostly
for solar cells, all in steady state. These include traditional [9, 61, 62, 63]and Boltzmann-
approximation [64, 65] detailed balance models, semianalytic models in the drift [66] and diffusion
[58, 67, 68] limits, and PDD models [69, 27, 59, 60]. The semianalytic models are specific to either
the drift or diffusive limits, while the PDD models allow treatment of IB regions that are neither
fully depleted nor fully quasi-neutral. A comparison of the features of the PDD models is also
included in Table 5.1. To our knowledge, none has been released as open-source software.

Here we introduce Simudo, a free and open source steady state PDD solver with self-consistent
optics for arbitrary numbers of bands. Simudo uses the finite element method (FEM) to solve the
coupled Poisson, drift-diffusion, and Beer-Lambert optical propagation equations self-consistently,
when necessary including changing f according to local generation and recombination, with as-
sociated changes in the optical absorption coefficient. Simudo has built-in radiative recombina-
tion, Shockley-Read trapping, and SRH recombination models in the non-degenerate limit and is
straightforward to extend to include other models of generation or recombination. All of the band
parameters, from energies to mobilities to cross sections, can vary in space or as functions of other
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parameters.
Simudo has a number of innovations in its formulation of the problem, described below,

and allows high-accuracy simulation of benchmark semiconductor problems while working with
64-bit arithmetic, making it useful both for standard semiconductor simulations as well as for
IB devices. It is written in the Python programming language, using the FEniCS platform
to solve the FEM problem [29]. It exposes an easy-to-use API for defining problems and ex-
tracting results. It is designed for two-dimensional systems and is available for download at
https://github.com/simudo/simudo.

Semiconductor device modeling is typically performed using the finite volume method (FVM),
which ensures local charge conservation at each cell in the domain [70]. Finite element methods
are less common in semiconductor device models, though there are a number of examples [71,
51, 72, 73]. FEM is widely used for related advection-diffusion problems in computational fluid
dynamics (CFD) studies [74]. Commercial packages for CFD, as for semiconductor device model-
ing, are generally based on the FVM method. TiberCAD, a commercial device modeling package
with many novel features, uses FEM with continuous basis functions[51]. Finite element methods
including discontinuous local basis functions, called discontinuous Galerkin (DG) methods, also
permit local charge conservation [74], and they have recently begun to be applied to semiconductor
device problems [75, 76]. FEM methods simplify consideration of complicated simulation domains
and in theory allow higher-order convergence of solutions, but performance of such methods can
only be determined with testing. We use such a DG-FEM method here to produce a general pur-
pose steady state PDD solver capable of treating IB systems, and we show that Simudo realizes
the higher-order convergence with mesh size, converging much more rapidly than Synopsys Sen-
taurus as the mesh spacing is reduced. As shown in Sec. 5.3.5, for a reference pn-diode, Simudo
demonstrates quartic self-convergence with mesh density while FVM-based Synopsys Sentaurus
demonstrates only quadratic convergence. In the reference problem, Simudo achieves 5-6 digits of
convergence with 193 mesh points while Sentaurus requires more than 3000. Simudo provides both
a flexible framework for the study of IB devices and also a freely available example of a DG-FEM
semiconductor device model.

In Section 5.2, we define the coupled partial differential equations (PDEs) Simudo solves.
Section 5.3 describes the heart of Simudo, giving in detail the conversion of the equations of
Section 5.2 to the weak forms solved using FEM. This section describes the choices for dynamical
variables, the weak forms used for FEM, and how these choices enable Simudo to achieve accuracy
despite the problems of finite precision arithmetic. This section concludes with a comparison
to Synopsys Sentaurus on a benchmark pn-diode, showing the high quality of Simudo’s results.
Section 5.4.1 gives examples of setting up a simple problem using the API, including examples of
its convenient topology definitions and Section 5.4.2 demonstrates the extensibility of Simudo to
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include new physical processes (in this case, Auger recombination). Section 5.4.3 demonstrates the
use of Simudo to analyze a system originally studied in [58], showing that its model works better
than had been anticipated in the case with equal subgap optical absorption cross sections, but
that unequal subgap absorption cross sections produce more complicated phenomena that require
IB transport to describe properly.

5.2 Statement of problem

In this section, we describe the mathematical model of the steady state PDD and optical problems
we use in Simudo. Carriers both drift in response to electric fields and diffuse. Carriers are
generated optically and recombine using a variety of models. The local carrier concentration
determines both the electric field and the optical absorption coefficients, so the transport, Poisson,
and optical propagation equations are all coupled. Symbols used in this manuscript are summarized
in Table 2.

5.2.1 Carrier transport and generation

We consider a CB, a VB, and some number of IBs under the assumption that the carrier population
in each band is in local quasi-equilibrium with a temperature T and quasi-Fermi level wk, where
k can be one of {C, V, I} for the CB, VB, and IB, respectively. In the case of multiple IBs, k can
take values I1, I2, . . . , indexing the various IBs, but we simplify the following discussion to consider
the case of just one IB, indexed as I.

In the most common approximation of semiconductor device modeling, the carrier dynamics in
each band can be described by the drift-diffusion equation and the continuity equation. Letting uk
represent the carrier concentration in band k, uV and uC are the hole and electron concentrations,
respectively, which we use interchangeably with their standard symbols, p and n. We let sk = ±1
give the charge of the carriers in band k, +1 for the VB and -1 for the CB. Then

j⃗k =

drift⏟ ⏞⏞ ⏟
qµkukE⃗−

diffusion⏟ ⏞⏞ ⏟
skqDk∇⃗uk (5.1a)

∂uk
∂t

= −sk
1

q
∇⃗ · j⃗k + gk, (5.1b)

where j⃗k is the current density of carriers in band k, µk is the carrier mobility, Dk is the carrier
diffusion constant, E⃗ is the electric field, q is the elementary charge, and gk contains all the
generation, trapping, and recombination processes (see Section 5.2.2). As stated in Eq. 2.54, for
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non-degenerate bands in which wk is sufficiently far from the band edge Ek − qϕ, we can write

uk = Nke
−sk(wk+qϕ−Ek)/kBT , (5.2)

where Nk is the effective density of states of band k, ϕ is the electrostatic potential, and kB is
Boltzmann’s constant.

Then, assuming Ek is spatially constant,

∇⃗uk = −skNke
−sk(wk+qϕ−Ek)/kBT 1

kBT
∇⃗(wk + qϕ) (5.3)

= −sk
uk
kBT
∇⃗(wk + qϕ), (5.4)

For such nondegenerate bands, the Einstein relation gives µk = qDk/kBT , from which Eq. 5.1a
gives [43]

j⃗k = µkuk ∇⃗wk, (5.5)

which we use instead of Eq. 5.1a. Equation 5.5 also applies to the case of degenerate bands,
as shown in [77], even though the Einstein relation requires a modification. Moreover, Eq. 5.5
applies in the case of spatially-varying band structure (e.g., spatially-varying Nc, EC)[78], so it is
considerably more general than this derivation.

Since an intermediate band is often partially filled, we cannot model it using the non-degenerate
approximation of Eq. 5.2. We write DI(E) for the density of states of the IB, such that NI =´
dE DI(E) is the total density of IB states. If the IB has quasi-Fermi level wI , the electron

concentration is

uI =

ˆ
dE

DI(E)

e(E−wI−qϕ)/kBT + 1
. (5.6)

If the bandwidth of the IB is narrow relative to kBT , we can approximate the IB density of
states as a Dirac delta DI(E) = NIδ(E − EI), and so

uI = NI
1

e(EI−wI−qϕ)/kBT + 1⏞ ⏟⏟ ⏞
fI

, (5.7)

where fI is the filling fraction of the IB, and can be written as fI = f(EI −wI − qϕ) where f(E) is
the Fermi function. We work in this limit for the remainder of this manuscript. Extending beyond
this sharp-IB case is not difficult but requires more cumbersome notation.
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5.2.2 Carrier generation and recombination

Each band’s continuity equation (Eq. 5.1b) has a generation term gk. This term is the sum of
contributions from all generation and recombination processes to the band, which depend on which
physical models are included in the simulations. We now specify the details of optical generation
gopt
k and a variety of recombination processes rk, each of which enters either as a negative or positive

contribution to gk, as required for the process.

5.2.2.1 Optical carrier generation

Modeling optical carrier generation requires modeling the changing light intensity through the
device. We use a simple Beer-Lambert model for optical propagation and absorption

∇⃗Φλ,ŝ · ŝ = −αλΦλ,ŝ (5.8)

where Φλ,ŝ is the photon spectral flux at vacuum wavelength λ and direction of propagation ŝ and
αλ is the total absorption coefficient, which can be written as

αλ =
∑︂
i,f

αfi,λ,

where αfi,λ is the absorption coefficient for the optical process at wavelength λ that moves a
carrier from band i to band f . In the usual semiconductor case, αV C,λ = 0 and αCV,λ is finite for
λ corresponding to energies larger than the band gap. Free-carrier absorption is included in αii,λ.

The carrier generation rate in band k due to optical processes is then

gopt
k = −sk

ˆ
dλ

(︃∑︂
i

αki,λ −
∑︂
f

αfk,λ

)︃
Φλ,ŝ. (5.9)

Further details of the optical propagation model are described in Section 5.2.3.
In nondegenerate bands, there are always enough carriers to excite in or out of a band. That

is, the valence band always has electrons available, and the conduction band has empty states
available to be filled, so the absorption coefficient αCV,λ is insensitive to the free carrier density
in the bands. In an IB, however, the VB→IB process requires empty states in the IB while the
IB→CB process requires filled states in the IB. To capture this phenomenon, we write

αCI,λ = σopt
CI,λuI (5.10)

αIV,λ = σopt
IV,λ(NI − uI) (5.11)

where σopt
fi,λ is the optical capture cross section from band i to f at wavelength λ of a single
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intermediate state. We can combine these equations into a single expression,

αkI,λ = σopt
kI,λuI,sk , (5.12)

where uI,− is just uI and uI,+ = NI−uI is the number of holes in band I, and αkI is understood to be
αIV when k = V . Since αfi,λ depends on the carrier concentrations, and the carrier concentrations
depend on αfi,λ (through the generation rate gopt

k ), the transport and the optical models feed into
each other, so they must be solved in a self-consistent manner.

5.2.2.2 Recombination and trapping

Simudo offers several built-in radiative and nonradiative recombination and trapping mechanisms
using the non-degenerate limit for the CB and VB, each including an equivalent thermal generation.
An example is the SRH recombination model with a single trap level at energy EI [35], in which two
trapping processes (of an electron and a hole) produce a recombination event, with recombination
rate

rSRH =
pn− n2

i

(p+ p1)τn + (n+ n1)τp
, (5.13)

where τp, τn are the carrier lifetimes and p1, n1 are the carrier concentrations of holes and elec-
trons, respectively, if their quasi-Fermi levels were equal to EI . This rSRH appears as a negative
contribution to gk for both CB and VB.

We can model traps as intermediate bands with wI tracked explicitly, in which case we imple-
ment standard Shockley-Read trapping [35],

rSR
Ik =

[︁
1− esk(wk−wI)/kBT

]︁
fI,−skuk/τk, (5.14)

where fI,−sk is the IB filling fraction of carriers with charge −sk, and τk is the Shockley-Read
lifetime for band k, as in Eq. 5.13 [35]. Note that rSR

IC makes a negative contribution to gC and a
positive contribution to gI , while rSR

IV makes a negative contribution to both gV and gI .
Simudo also implements radiative trapping from band k = C, V to I. When we use Boltzmann

statistics rather than Bose statistics for the emitted photons, which is valid when |wk−wI | remains
at least a few kBT below |Ek − EI |, as in Ref. [27], then the radiative trapping can be written

rrad
Ik =

[︁
e−sk(wk−wI)/kBT − 1

]︁
uI,skIIk, (5.15)
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where

IIk =
8πn2

r

h3c2

ˆ ∞

0

σopt
Ik (E)E2e−E/kBT dE, (5.16)

where nr is the index of refraction, and uk,1 is either n1 or p1 for k = C, V , respectively. Note that
Ref. [27] includes only the recombination term, and we add the corresponding thermal generation
term, which is the −1 in Eq. 5.15. We can re-express Eq. 5.15 in a similar form to the nonradiative
terms by using the relation

uI,sk =
uI,−skuk
uk,1

esk(wk−wI)/kBT ,

which follows from Eqs. 5.2, 5.7. Then

rrad
Ik =

[︁
1− esk(wk−wI)/kBT

]︁ uI,−skuk
uk,1

IIk. (5.17)

As with Eq. 5.2, Eqs. 5.14-5.16 are valid in the non-degenerate limit where wk does not approach
Ek but full degenerate statistics are used for the IB. Extensions to the degenerate limit can be added,
if desired. Simudo also treats standard radiative recombination between conduction and valence
bands [79].

We also treat surface recombination at external surfaces Γ of the device, which imposes a
boundary condition

j⃗k · n̂|Γ = Sk(uk − uk0)|Γ, (5.18)

where Sk is the surface recombination velocity of carriers in band k at boundary Γ, n̂ is the normal
to Γ, and uk0 is the carrier concentration at equilibrium [80]. The current release of Simudo
supports only Sk = 0 or ∞, which impose j⃗k · n̂|Γ = 0 or (uk − uk0)|Γ = 0, respectively.

5.2.3 Optical equations

For each wavelength, we need to solve the optical propagation according to Eq. 5.8. For stability
of the numerical solution, it is convenient to use a second-order equation so that we can apply
boundary conditions on both the inlet and outlet boundaries [81]. We take the derivative of Eq. 5.8
with respect to the direction of propagation,

ŝ · ∇⃗(ŝ · ∇⃗Φλ,ŝ) + ŝ · ∇⃗(αλΦλ,ŝ) = 0, (5.19)
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With no reflection from the back, the boundary conditions are then

Φλ,ŝ = Φ0
λ,ŝ x⃗ ∈ Γi (inlet) (5.20a)

ŝ · ∇⃗Φλ,ŝ + αλΦλ,ŝ = 0 x⃗ ∈ Γo (outlet) (5.20b)

where Φ0
λ,ŝ is a spectral photon flux at the inlet boundary.

In the case where αλ is constant for λ in an interval [λ1, λ2], the optical flux at all wavelengths
in that range obeys Eq. 5.19 and can thus be treated together. We can write

Φ[λ1,λ2],ŝ =

ˆ λ2

λ1

Φλ,ŝdλ, (5.21)

where Φ[λ1,λ2],ŝ is a photon flux (where Φλ,ŝ is a spectral photon flux). In this case, we have

ŝ · ∇⃗(ŝ · ∇⃗Φ[λ1,λ2],ŝ) + ŝ · ∇⃗(αλΦ[λ1,λ2],ŝ) = 0. (5.22)

Simudo uses this form, which allows simple treatment of piecewise constant absorption coefficients
with a small number of optical fields Φ[λ1,λ2],ŝ. When optical fields with only one propagation
direction ŝ are considered, we write the spectral flux density Φλ and the flux density Φ[λ1,λ2].

5.2.4 Poisson’s equation

In electrostatics, Poisson’s equation relates ϕ, the charge density ρ, and the permittivity ε,

∇⃗ · (ε ∇⃗ϕ) = −ρ. (5.23)

It can also be split into two equations

∇⃗ϕ = −E⃗, (5.24a)

∇⃗ · (εE⃗) = ρ, (5.24b)

where E⃗ is the electric field.
The charge density ρ is the sum of the static charge and the mobile charge in each band. In

an IB material,

ρ = q[−n+ p−NI(fI − fI,0) +ND −NA], (5.25)

where NA, ND are the shallow acceptor and donor doping concentrations, respectively, the mobile
charge in the IB is qNI(fI−fI,0), with fI,0 the IB filling fraction of the bulk IB material at T = 0 K.
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For a donor-type IB fI,0 = 1, and for an acceptor-type IB fI,0 = 0. Note that in writing the shallow
dopant terms ND and NA, we are assuming complete ionization of these impurities.

5.3 Numerical method

Simudo uses the finite element method (FEM) to solve the coupled Poisson/drift-diffusion and
optics problems, given by Eqs. 5.1b,5.5,5.19, and 5.24. The FEM method divides the simulation
domain Ω into cells, which are generally triangles in 2D, and enforces a weak form of the desired
PDE’s with a set of test functions defined on those cells, with boundary conditions applied on the
domain boundary Γ. The method is well-described in many reference texts [82, 41, 40]. In this
section, we detail the weak forms used for these coupled equations and the solution method for
the resulting nonlinear system. We benchmark Simudo against the industry standard Synopsys
Sentaurus commercial simulator on a standard semiconductor problem to show the quality of our
results.

5.3.1 Solution method

The PDD problem is a coupled nonlinear system of PDEs, which we solve iteratively using Newton’s
method as implemented in the FEniCS package. The solution procedure is outlined in Fig. 5.2.
The goal is to find a solution y = (ϕ, E⃗, wC , wI , wV , j⃗C , j⃗I , j⃗V ) that satisfies Eqs. 5.1b,5.5,5.24 and
associated Φλ that obeys Eq. 5.19. The optical problem is solved alongside the PDD problem in
a self-consistent manner. That is, the PDD subproblem produces the absorption coefficient α(λ)
(which, for processes involving the IB, depends on the filling fraction). The optical subproblem is
then solved using these absorption coefficients, yielding a new photon flux Φλ, which is fed back
into the PDD where it enters in the optical carrier generation process, and the cycle iterates until
a self-consistent solution is found.

The convergence of Newton’s method depends on the quality of the initial guess. Steps 1 and
2 in Fig. 5.2 are the pre-solver, which is used once to make the initial guess for the main Newton
solver, illustrated in step 3. The full procedure is:

1. For each point in space, calculate the equilibrium Fermi level EF at that point assuming
local charge neutrality and ϕ = 0.

Physically, this step finds the EF in each location that makes it charge neutral, before any
charge is allowed to flow.

2. Determine the built-in potential ϕbi of the equilibrium system, using ϕ0 = EF/q as the initial
guess. That is, solve only Eq. 5.24 for ϕ while keeping all wk = 0 and thus all j⃗k = 0.
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Figure 5.2: Workflow of the numerical method used in Simudo. Steps 1 and 2 are pre-solver steps,
which construct an initial guess for the main Newton loop (step 3).
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Physically, this step allows charge to move, forming depletion regions as the carriers move
to achieve a zero-current configuration that satisfies Poisson’s equation. The carrier density
inside bulk-like regions of space changes little from the bulk equilibrium value in step 1,
making ϕ0 an excellent guess in large regions of space.

3. Main solver loop Adaptively ramp up light intensity and/or bias, starting with thermal
equilibrium (dark, no bias). Each solution requires a loop of Newton iterations. Within each
Newton iteration, do the following:

(a) Optical calculation For each optical field λ, solve for the photon flux Φλ given the
latest value of αλ. Note that Eq. 5.19 is linear when αλ is fixed.

(b) PDD Newton step Perform one Newton step of the PDD problem.

i. Solve for δy = δ(ϕ, E⃗, wC , wI , wV , j⃗C , j⃗I , j⃗V ). Use the value of Φλ (and thus optical
carrier generation) computed in the previous step.

ii. Update y ← y + δy.
As an option, logarithmic damping can be applied to δy to prevent Newton’s
method from diverging, e.g., y ← y + LogDamping(δy) where LogDamping(z) =

sgn(z) log(1 + c|z|)/c for c = 1.72 or other user-defined value [83].

We now describe the weak forms that we use for each of Eqs. 5.1b, 5.5, 5.19, and 5.23. There is
much flexibility in the choice of particular weak forms, all of which can be equivalent to the same
strong form. In Section 5.3.3.2 we illustrate the use of a partitioned offset representation for wk,
which allows internal currents to be calculated accurately with double-precision arithmetic.

5.3.2 Poisson equation

Here we introduce the formulation we use to implement Eq. 5.24. We use a mixed method to solve
for both ϕ and E⃗ explicitly [84, 85]. The potential ϕ is represented as a superposition of discontinu-
ous Galerkin (DG) basis functions of order dpoisson−1 (cell-wise discontinuous polynomials), and E⃗
is represented using Brezzi-Douglas-Marini basis functions of order dpoisson (cellwise discontinuous
polynomials with continuous normal component on cell boundaries) [84]. We use the BDM space
for all vector quantities, including E⃗ and j⃗k. The BDM space is H(div) conforming, meaning the
divergence is accurately calculated and fluxes between cells are preserved, which makes it a natural
choice for conserved or almost conserved vector quantities.1 While j⃗k is not a conserved quantity,
due to generation and recombination that occur inside of cells, the BDM space ensures that j⃗k is

1In the BDM space, the normal fluxes are shared by adjacent elements. The flux exiting the perimeter of a
collection of cells exactly equals the sum of fluxes out of each of the cells, with exact arithmetic.
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accurately preserved when passing between cells. A method using CG or DG functions for j⃗ would
be susceptible to numerical errors associated with non-conservation of currents between cells, and
we show in Sec. 5.3.3.2 that Simudo conserves current well in a pn diode. In the results below,
dpoisson = 2.

We multiply Eq. 5.24a by test function ψ⃗ ∈ BDM(dpoisson) and Eq. 5.24b by test function
v ∈ DG(dpoisson − 1), then integrate each spatially, giving the weak forms

˛
Γ

ψ⃗ · n̂ ϕBC⏞ ⏟⏟ ⏞
natural BC

−
ˆ
Ω

(∇ · ψ⃗)ϕ+

ˆ
Ω

ψ⃗ · E⃗ = 0 (5.26)

ˆ
Ω

v
(︁
∇ · (εE⃗)

)︁
−
ˆ
Ω

v ρ = 0, (5.27)

which must hold for every test function ψ⃗ and v, where Ω is the full domain and Γ is the boundary.
Note that Eq. 5.26 includes an integration by parts. In this case, the electric field BC is an essential
BC, imposed by reducing the set of test functions to those that satisfy the BC, while the potential
BC is a natural BC.

5.3.3 Transport equations

The drift-diffusion equations are often numerically challenging to solve in semiconductors. In
carrier density-based formulations, poor resolution of the gradients of uk makes linear interpolation
of current density unstable, which the Scharfetter-Gummel box method corrects for FVM methods
[42]. Additionally, catastrophic cancellation can occur in Eq. 5.1a, e.g., for the majority carrier in
a quasi-neutral region of a semiconductor, when the drift and diffusion contributions are nearly
equal in magnitude. The current is given by the difference and can be hard to evaluate with finite
precision arithmetic. We address these issues by using a quasi-Fermi-level-based representation
for carrier density [86, 72]. Calculating ∇⃗wk in finite precision for Eq. 5.5 can also be challenging
when wk is very flat, and in Sec. 5.3.3.2 we introduce a partitioned offset representation for wk

to allow accurate determination of ∇⃗wk with essentially no extra computational cost. We use a
mixed FEM method that solves explicitly for both wk and the current density j⃗k. As described in
Sec. 5.3.2, the BDM space of basis functions enforces local current conservation in the solutions,
which also enables local current densities to be well determined. Without the mixed method, local
current conservation is enforced indirectly, and we were not able to obtain well-converged results
for local currents.
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5.3.3.1 Quasi-Fermi level formulation

The quasi-Fermi level wk is represented as a superposition of DG basis functions of order dtransport−
1, and the current density j⃗k is represented using BDM basis functions of order dtransport. Sec-
tion 5.3.2 contains a discussion of these functions’ properties and of the mixed method. In the
results below, dtransport = 2.

We derive weak forms of Eq. 5.1b and Eq. 5.5, multiplying Eq. 5.1b by test function v ∈
DG(dtransport − 1), taking the dot product of Eq. 5.5 with the test function ψ⃗ ∈ BDM(dtransport),
and integrating each equation spatially, giving

0 =

ˆ
Ω

v ∇⃗ · j⃗k −
ˆ
Ω

skv qgk (5.28a)

0 =

ˆ
Ω

ψ⃗ · j⃗k/(µkuk)−
˛
Γ

(ψ⃗ · n̂)wk,BC⏞ ⏟⏟ ⏞
natural BC

+

ˆ
Ω

(∇⃗ · ψ⃗)wk, (5.28b)

where the second equation was obtained by a further integration by parts.

5.3.3.2 Quasi-Fermi level offset partitioning

As written, Eq. 5.28b still suffers from a form of catastrophic cancellation in its last term, which
corresponds to the gradient term in Eq. 5.5. Since

´
Ω
∇⃗ · ψ⃗ = 0 for ψ⃗ ∈ BDM(dtransport), the last

term is nonzero only if wk varies within the domain where ψ is nonzero. wk can be extremely
flat, for example in quasineutral regions, which makes this integral hard to calculate with finite
arithmetic precision. This difficulty is more apparent in Eq. 5.5: if j⃗k/µkuk = ∇⃗wk is small,2 a
representation of wk that stores its value on the nodes of the mesh (as described in Remark 5)cannot
resolve such small changes in wk across space.

We circumvent this issue by using an offset representation for wk. The idea is to give each cell
in the domain its own (spatially constant) base quasi-Fermi level wk0 relative to which the new
dynamical variable δwk is expressed. That is, wk = wk0+δwk where δwk is the quantity we actually
solve for instead of wk. Before every Newton iteration step, the wk0 of each cell is initialized to the
cell average of wk from the previous iteration. This representation allows small spatial changes of
δwk to be accurately represented, enabling accurate determination of the current.

The last remaining question is how to adjoin regions with different base wk0 values. We connect
2relative to |wk|/(mesh size)
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them by adding a surface integral jump term to Eq. 5.28b, resulting in

0 =

ˆ
Ω

ψ⃗ · j⃗k/(µkuk)−
˛
Γ

(ψ⃗ · n̂) δwk,BC +

ˆ
Ω

(∇⃗ · ψ⃗) δwk

+
∑︂

f∈interior facets

ˆ
f

(ψ⃗ · n̂) [wk0]⏞ ⏟⏟ ⏞
region boundary term

. (5.29)

where [wk0] is the jump operator, which takes the difference between the values of a discontinuous
expression on either side of a facet (see Appendix B). The rest of this section is dedicated to
deriving that term and comparing the result to a formulation without the offset representation.

We substitute wk = wk0 + δwk into Eq. 5.28b, and we obtain

0 =

ˆ
Ω

ψ⃗ · j⃗k/(µkuk)−
˛
Γ

(ψ⃗ · n̂) δwk,BC +

ˆ
Ω

(∇⃗ · ψ⃗) δwk

−
˛
Γ

(ψ⃗ · n̂)wk0,BC +

ˆ
Ω

(∇⃗ · ψ⃗)wk0⏞ ⏟⏟ ⏞
(⋆)

. (5.30)

Our goal now is to rewrite the (⋆) term. Since wk0 is constant on each cell K, ∇⃗wk0 = 0⃗ within
each cell. We integrate by parts using

ˆ
Ω

σ⃗ · ∇⃗a+
ˆ
Ω

a(∇⃗ · σ⃗) =
˛
Γ

σ⃗a · n̂, (5.31)

yielding
ˆ
K

ψ⃗ · ∇⃗wk0⏞ ⏟⏟ ⏞
0⃗

+

ˆ
K

(∇⃗ · ψ⃗)wk0 =

˛
∂K

(ψ⃗ · n̂)wk0 (5.32)

Summing over all cells K,

∑︂
K

ˆ
K⏞ ⏟⏟ ⏞´

Ω

(∇⃗ · ψ⃗)wk0 =
∑︂
K

˛
∂K

(ψ⃗ · n̂)wk0 (5.33)

ˆ
Ω

(∇⃗ · ψ⃗)wk0 =

˛
Γ

(ψ⃗ · n̂)wk0 +
∑︂

f∈interior facets

ˆ
f

(ψ⃗ · n̂) [wk0] (5.34)

−
˛
Γ

(ψ⃗ · n̂)wk0 +

ˆ
Ω

(∇⃗ · ψ⃗)wk0⏞ ⏟⏟ ⏞
(∗)

=
∑︂

f∈interior facets

ˆ
f

(ψ⃗ · n̂) [wk0] (5.35)
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p-type n-type
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Figure 5.3: (a) Current densities jC and jV for a silicon pn-junction at a bias of 0.16 V. Simudo’s
partitioned offset representation (dashed, dark lines) allows robust determination of internal cur-
rent densities, while calculations without the offset representation (solid, dull lines) cannot deter-
mine the majority current densities accurately. (b) Total charge current density at the contact.
Results with and without the offset representation agree to 5 digits of precision.

which, plugged into Eq. 5.30, yields Eq. 5.29.
We perform a test of Simudo, which uses the partitioned offset representation, against the

identical model without the offset representation. We consider a standard silicon pn-junction
diode with symmetric doping of 1018 cm−3 and SRH lifetimes of 1 ns and 1 µs in the p- and
n-type regions, respectively. Each region has a length of 250 nm, for total device length of 500 nm.
Although the problem is one-dimensional, we consider a 2D region with a height of 1 µm. At
each contact, the majority carrier has an infinite surface recombination velocity while the minority
carrier has zero surface recombination. We use a mesh with 769 points in the x-direction, which
is tightest near the contacts and junction and expands out geometrically toward the middle of the
quasi-neutral regions. The mesh has 2 points in y-direction, and further details of the mesh are
given in Sec. 5.3.5.

The offset representation allows internal current densities to be resolved accurately throughout
the device. Figure 5.3(a) shows the electron and hole currents under 0.16 V bias. Without the
offset representation, the majority currents are poorly resolved, due to the inability to resolve ∇⃗wk

with double-precision arithmetic. The majority currents in the no-offset model become worse as
the mesh density increases (not shown), as expected for approximations of ∇⃗wk. Figure 5.3(b)
shows the total charge current density at the contact, and the results with and without the offset
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representation agree to 5 digits. We conclude that the offset representation allows robust extraction
of internal current densities but does not seem to be important for the overall current density of the
test device. The offset representation imposes essentially no extra computational cost on Simudo
while enabling robust determination of internal current densities.

5.3.4 Optics

The optical problem is solved by self-consistently iterating through the optical flux variables
Φ[λi,min,λi,max],ŝi and independently solving Eq. 5.19 for each one. For convenience, we write Φ =

Φ[λi,min,λi,max],ŝi , ŝ = ŝi, and α = α[λi,min,λi,max] for the remainder of this section. We represent Φ

using CG basis functions of order doptical = 2.
We now derive the weak form used in Simudo to solve each optical propagation problem.

We follow closely the derivation in [81] of the modified second order radiative transfer equation
(MSORTE) method, without the scattering matrix. Integrating Eq. 5.19 with a test function
v ∈ CG(doptical) gives

ˆ
Ω

v⃗ · ∇⃗ζ +
ˆ
Ω

v⃗ · ∇⃗(αΦ) = 0, (5.36)

where v⃗ = v ŝ and ζ = ŝ · ∇⃗Φ. Using Eq. 5.31, we obtain
˛
Γ

(v⃗ · n̂) ζBC −
ˆ
Ω

(∇⃗ · v⃗) ζ +
ˆ
Ω

v⃗ · ∇⃗(αΦ) = 0. (5.37)

Inserting the outlet boundary condition Eq. 5.20b into the first term, we obtain the final weak
form

˛
Γ

(v⃗ · n̂) (−αΦ)−
ˆ
Ω

(∇⃗ · v⃗) ζ +
ˆ
Ω

v⃗ · ∇⃗(αΦ) = 0 (5.38)

The inlet boundary condition Eq. 5.20a is applied directly on Φ as an essential boundary
condition.

5.3.5 Sentaurus benchmark comparison

To validate Simudo, we benchmark it against the industry standard Synopsys Sentaurus device
simulator. Since Sentaurus does not support intermediate band materials, the benchmark is limited
to standard semiconductors. Our test problem is the same silicon pn-junction as considered in
Section 5.3.3.2, with the overall J(V ) as shown in Fig. 5.3(b). See below for a discussion of the
differences in implementation of the Ohmic condition between Simudo and Sentaurus.
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We study the convergence of the results as the mesh is refined, using a number of mesh points
in the x-direction ranging from 45 to 12289, with the same meshes used for both Sentaurus and
Simudo. The mesh spacing is nonuniform in the x-direction since the carrier and current densities
vary most rapidly near the contacts and the junction. The meshes are generated by splitting the
structure into two regions, one extending from the p-contact to the junction and one from the
n-contact to the junction. In each region, a mesh spacing d0 is applied to the cell adjacent to the
contact and the cell adjacent to the junction. The mesh spacing increases geometrically toward
the center of each region with a growth factor of 1.2. To generate the finest mesh sizes, these cells
are further subdivided into 4, 16 or 64 equal parts. There are 2 points in the y-direction. The
computational cost generally increases with the number of degrees of freedom rather than with
the number of cells in the mesh. Simudo has more degrees of freedom associated with each cell
than Sentaurus, due to its higher-order basis functions. For this mesh, Simudo has 36 degrees
of freedom per triangle while Sentaurus has 9 per triangle, with 2 triangles per mesh point. In
this mesh, each triangle has at least one edge on the boundary of the device, which increases the
number of degrees of freedom per triangle compared to a mesh where most triangles share sides;
this effect is similar for both methods.

Figure 5.4(a) shows the results of the study, where we plot the relative error in J(V ) for each
simulation, with the reference current Jref taken from Sentaturus with the densest mesh. With 193
mesh points, Simudo converges approximately as well as Sentaurus with 3073 mesh points. Above
769 mesh points, the Simudo results show no further improvement in error, indicating either that
Simudo and Sentaurus converge to results that differ at the 10−5 level or that Sentaurus with 12289
mesh points is only converged to the 10−5 level, while Simudo may have converged more precisely.
The simulations were performed on different machines, so we do not report timing data.

The figure makes clear that Simudo converges much more rapidly with mesh size than Sen-
taurus, which demonstrates the higher order convergence that FEM is supposed to provide over
FVM. Figure 5.4(b) shows the scaling of the errors with the number of degrees of freedom in each
simulation, at 0.4 V. The solid blue line shows that Sentaurus’ self-convergence scales like N−2

with the number of degrees of freedom. The dashed green line shows Simudo’s self-convergence,
with Jref taken from the Simudo simulation with 12289 mesh points. It shows that Simudo’s self-
convergence scales like N−4 with the number of degrees of freedom. For all but the smallest meshes,
Simudo’s convergence is superior to Sentaurus’ at the same number of degrees of freedom. Taken
together, these figures show that with 193 mesh points, Simudo’s result is as good as Sentaurus’
with 64 times as many mesh points, which is equivalent to 16 times as many degrees of freedom.

Note that the boundary conditions at the contacts are not precisely the same for the Sentaurus
and Simudo simulations. Both are intended to simulate Ohmic contacts for the majority carrier
and surface recombination velocities of 0 for the minority carrier. The Simudo simulations are
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Figure 5.4: (a) Relative error in total current J for a test pn-junction in the dark, at several mesh
densities. Dashed lines show results from Sentaurus, and solid lines show results from Simudo,
with the same meshes. The Sentaurus result with the finest mesh is taken as Jref for calculating
relative error. Points at V = 0 are removed to avoid dividing by zero. (b) Relative errors at 0.4 V
plotted against the number of degrees of freedom in each simulation. Solid lines use Sentaurus
results for Jref, and the dashed line shows Simudo self-convergence. Dotted lines show the scaling
trends of the two methods.
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performed with surface recombination velocity S =∞ and 0 for the majority and minority carriers,
respectively, imposing equilibrium carrier concentration at the boundary for majority carriers and
setting j⃗k · n̂|Γ = 0 for minority carriers, as described in Sec. 5.2.2.2. The Sentaurus simulations
are performed with S = 0 for the minority carriers, in agreement with Simudo, and the default
“Ohmic contact” boundary condition for the majority carriers, which imposes charge neutrality
and equilibrium carrier concentration at the contact. Under small and reverse bias, these two sets
of boundary conditions should be equivalent, but under large forward bias, the default Sentaurus
boundary condition is expected to give incorrect results due to its imposition of charge neutrality
[87]. Sentaurus provides a “Modified Ohmic” boundary condition, which should be closer to the
Simudo boundary condition, but we were unable to attain convergence using it. As a result, at
larger biases the Simudo and Sentaurus results diverge from each other, and we do not include
them in Fig. 5.4. For biases larger than 1 V, the diode is in high injection, and the Boltzmann
approximation used in this calculation is not accurate, regardless.

5.4 Examples and results

In this section, we give examples of using Simudo. Section 5.4.1 shows how to set up a simple
1-dimensional pn-junction device and demonstrates the helpful tools that Simudo provides for
defining regions and boundaries. Section 5.4.2 shows the extensibility of Simudo by illustrating
the code required to add a new Auger recombination process. Section 5.4.3 illustrates the use of
Simudo to study a system first considered in [58].

5.4.1 pn junction and topology definitions

We include in the supplementary material the code listing equilibrium.py describing a simple
pn-junction device in Simudo. This example constructs the device and implements steps 1-4 of the
pre-solver shown in Fig. 5.2. Here, we discuss some of the pieces of that code and illustrate the
useful topology construction operations built in to Simudo.

In the 1-dimensional pn-junction example, the object ls contains information about the layers,
including their sizes, positions, and mesh. The object pdd sets up the Poisson/drift-diffusion
solver and has information about the bands in each material, including recombination processes
and boundary conditions. In this example, there are only two bands (VB, CB); for a problem
including an IB, pdd would have a third band, too.

Simudo is designed for 2-dimensional simulations, and it has sophisticated tools to define the
arrangement of materials, dopings, contacts, meshing regions, or other user-defined spatial prop-
erties. In many FEM solvers, interfaces must be tracked manually, including their orientation,
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b1 = r2.boundary(exterior_right) r3 = r2 - r1

b2 = r1.boundary(r3) b3 = b2.flip()

region2

Figure 5.5: Simudo allows users to define complicated domains and regions within them, with
useful tools to automatically keep track of the required cells and facets in each region. (a) A
simulation domain divided into overlapping region1 and region2. Simudo automatically defines
the exterior outside the simulation domain, and provides the helper regions exterior_left,
exterior_right, exterior_top, and exterior_bottom, which may not be helpful, depending on
the shape of the domain. Even before the regions are given specific geometries in the simulation
domain (e.g., those pictured in (a)), Simudo’s topology tools allow construction of further regions
and facets. (b-e) Derived regions and facets from the domain shown in (a), with the Simudo
command to produce them shown underneath, where we shorten regionX to rX. Further example
code is shown in Fig. 5.6. (b) The contact FacetRegion b1 is the signed boundary from region2 to
exterior_right, with the sign indicated by the arrows. It can be used for determining the current
flow out of the device. (c) region3 is region2 with region1 removed. (d) The FacetRegion b2
is the signed boundary from region1 to region3. (e) The flip operation reverses the sign of the
boundary.
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from simudo.mesh import CellRegions , FacetRegions
R = CellRegions () ; F = FacetRegions ()

# R.region1 is created automatically when referenced
print(R)
print(R.region1 , type(R.region1))
print(R)
## CellRegions ({})
## CellRegionByName(’region1 ’) <class ’simudo.mesh.topology.CellRegionByName ’>
## CellRegions ({’region1 ’: CellRegionByName(’region1 ’)})

# Define new region as set difference of region2 and region1
R.region3 = R.region2 - R.region1
# The method (R.region1).boundary(R.region2) creates the signed boundary from

region1 into region2 , e.g., for calculating flux. R.region2 is created when
referenced.

F.b1 = (R.region2).boundary(R.exterior_right)
F.b2 = (R.region1).boundary(R.region3)
F.b3 = (F.b2).flip()

Figure 5.6: Example of using CellRegions and FacetRegions to construct regions corresponding
to those shown in Fig. 5.5. The R and F objects are containers for cell and facet regions respec-
tively. They are both initialized empty, and regions in each one are created when referenced.
The boundary method in (R.region1).boundary(R.region3) creates the signed boundary from
region1 to region3. The flip() method gives the boundary with the opposite sign. The actual
mapping of these regions into the domain occurs in the mesh generation.
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to ensure that integrals over those interfaces are added together properly. Simudo introduces a
set of topology tools that instead allow users to define the regions and interfaces in which they
are interested, and Simudo takes care of all the bookkeeping. The user defines regions as desired
(e.g., emitter, base, defective-region), which can then be given properties, whether they be doping
levels, recombination parameters, or other desired properties. These regions are initially defined
abstractly, without having any coordinates in the device, using CellRegions and FacetRegions,
and are later connected to geometry and materials by the mesh generator.

Full details are given in the documentation accompanying Simudo, but we give a further illus-
tration of these methods in Figs. 5.5 and 5.6. That example illustrates the creation of arbitrary
CellRegion objects, including unions and intersections, and edges that connect them. When R is a
CellRegions container, accessing a nonexistent attribute (such as R.domain) causes its creation.
The user can define new CellRegion objects by applying Boolean operations on previous ones
and new FacetRegion objects by using the boundary method. For example, consider the region
R.region1. Then
R.region1.boundary(R.region2) creates a signed boundary from region1 to region2, as illus-
trated in Fig. 5.5. All of these custom regions are kept as symbolic expressions and evaluated
by Simudo only when needed (e.g., when asked to apply a boundary condition or when asked to
compute a volume or surface integral). This layer of abstraction allows the user not to worry about
the details of mesh markers, entity indices, and facet orientations [88], and is described more fully
in the documentation that accompanies Simudo.

The examples in Figs. 5.5-5.6 illustrate another useful concept. The mesh generation interprets
the external region as being outside the simulation domain, allowing convenient definitions for
boundary conditions and current flow. The FacetRegions are used in the pn-junction example
shown in the supplementary material to define the boundary conditions, which – in step 2 – are
conductive at the left and right contacts and nonconductive at the top and bottom surfaces. That
example also shows how the mesh can be refined by adding extra mesh points near the contacts.

5.4.2 Extensibility: Adding Auger recombination

The initial release of Simudo contains radiative and Shockley-Read trapping and recombination
processes in the non-degenerate limits for VB, CB. The user can easily add modified physics to
their problems, which we demonstrate here with an example of adding an Auger recombination
process to Simudo, with the form

UA = Cn(n
2p− n2

0p0) + Cp(p
2n− p20n0), (5.39)

where Cn, Cp are the Auger coefficients, and p0 and n0 are the hole and electron concentra-
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from simudo.physics import (DarkEOPMixin , TwoBandEOPMixin ,
ElectroOpticalProcess)

class AugerRecombination(DarkEOPMixin , TwoBandEOPMixin , ElectroOpticalProcess):
""" Auger recombination """
name = ’Auger’

def get_Auger_C(self , band):
return self.pdd.spatial.get(’/’.join((

self.name , band.name , ’C’)))

def get_generation_user(self , band):
# In this case , sign is +1 for CB , VB and None for all other bands
sign = self.get_band_generation_sign(band)
if sign is None:

return self._zero_generation

CB = self.dst_band ; C_n = self.get_Auger_C(CB)
VB = self.src_band ; C_p = self.get_Auger_C(VB)

n = CB.u ; n0 = CB.thermal_equilibrium_u
p = VB.u ; p0 = VB.thermal_equilibrium_u

r = (C_n*(n**2 * p - n0**2 * p0) +
C_p*(p**2 * n - p0**2 * n0))

return (-r) * sign # Contribution to generation rate

...

spatial.add_rule(’Auger/CB/C’, R.domain ,
U(’1.1e-30 cm^6/s’))

spatial.add_rule(’Auger/VB/C’, R.domain ,
U(’0.3e-30 cm^6/s’))

Figure 5.7: Example Simudo code that implements Auger recombination (Eq. 5.39), including
the AugerRecombination class. The last four lines show the Auger material parameters being set
throughout the domain.
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tions at thermal equilibrium, respectively [79]. The code is listed in Fig. 5.7. The function
get_generation_user(band) adds a negative local generation rate in the CB and VB and returns
0 for all other bands. This recombination process moves particles between two bands, the src_band
and the dst_band. In this case, where the electrons and holes have opposite charge, the Auger
process destroys both particles simultaneously; if both carrier types involved in the process had the
same charge (e.g., for a CB-to-IB trapping process), the process would represent a particle-number-
conserving transfer (rather than a recombination) from the src_band to the dst_band, with the
appropriate sign for the recombination process determined by the get_band_generation_sign

method (inherited from TwoBandEOPMixin). This method’s sign convention is that the dst_band

always gains carriers through the generation process, while the src_band gains or loses as required
by conservation of charge.

5.4.3 P[IB]N junction

In Ref. [58], the authors consider a quantum-dot-based IB solar cell with a p-n-IB-p-n structure.
They present a drift-diffusion model for the IB region only, with the carrier density and current
density boundary conditions obtained from a depletion approximation and law of the junction.
This model assumes that transport is diffusion-dominated in the IB region, and drift can therefore
be neglected. This early device model gave important insights into the behavior of IB devices.

Table 5.2: Parameters modeled on the device from [58], for Figs. 5.8–5.10.
Value Definition
EC = 1.67 eV Conduction band edge energy
EI = 1.10 eV Intermediate band energy
EV = 0 eV Valence band edge energy
NC = NV = 5× 1018 cm−3 CB and VB effective density of states
NI = 1017 cm−3 IB density of states
µC = µV = 2000 cm2/V/s CB and VB mobility
µI = 0.001− 300 cm2/V/s IB mobility
αCV = 104 cm−1 Absorption coefficient for CV process
σopt
CI = (2− 10)× 10−13 cm2 Optical cross section for CI process
σopt
IV = 2× 10−13 cm2 Optical cross section for IV process
ε = 13ε0 Dielectric constant
Ts = 6000 K Sun temperature
Tc = 300 K Cell temperature
X = 1000 Solar concentration factor
wIB = 1.3 µm IB region length
fI,0 = 1/2 Charge-neutral IB filling fraction

In testing the self-consistency of the model, the authors estimate the IB mobility required to
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remain in the diffusion-dominated regime, finding that an IB mobility greater than 62 cm2/V/s is
required to make their model consistent. This claim raises an immediate question: does something
interesting happen when the IB mobility goes below that threshold? Since Simudo is a full drift-
diffusion device model, we can directly answer that question.

We model a similar device with a simpler p-IB-n structure. This device has the same band
and absorption parameters as the device described in [58], summarized in Table 5.2. The incident
light is a blackbody spectrum at 6000 K with a solar concentration factor X = 1000. The device
has equal subgap optical cross sections and nearly current matched (within 10%) incident photon
fluxes for the two subgap transitions. In this case, the local IV and CI generation rates are
nearly identical throughout the IB device. The code to set up this problem is included in the
supplementary material, in marti2002.py.

We simulate this device with µI ranging from 0.001 to 300 cm2/V/s, with resulting J-V curves
shown as solid lines in Fig. 5.8a, which is tightly zoomed and still shows only minor effects of this
over-105 change in µI . In fact, the IB and drifts currents contribute negligibly to the transport
inside the IB region and the current remains diffusion-dominated throughout, as shown in Fig. 5.9a.

The device behavior is approximately independent of µI because the IV and CI generation rates
are roughly equal at each point in the device, so IB transport is not required to enable sub-gap
current matching, but this behavior is not generic for all IB devices. We illustrate this effect by
increasing σopt

CI by a factor of five (while keeping σopt
IV unchanged). In this case, the device is still

globally approximately current-matched, but the CI absorption process occurs preferentially at
the top of the device while the IV generation occurs deeper in the IB region. The device thus
relies on IB transport for the CI and IV generation rates to balance over the full device. These
effects are shown in the dashed curves of Fig. 5.8, which show a stronger dependence on µI than
in the matched case. When IB mobility is low, the excess CI generation in the front of the device
instead causes local CI trapping, with equivalent local IV trapping toward the back of the device,
reducing overall current. In the high-mobility case, the overall current is slightly larger with the
mismatched absorptions, due to the increased optical depth. Figure 5.8b shows how Jsc varies with
µI in both of these cases, where the greater dependence on µI in the mismatched case is apparent.
Figure 5.9b shows that in the matched-σopt case, jI is never particularly large, while it grows to
be five times larger in the mismatched case, showing the role of IB currents in internally balancing
the optical absorptions.

In the low-mobility limit, where jI is always small, when local CI and IV current generations
are imbalanced, the filling fraction f of the IB must shift to equalize generation and recombination
at each point [89]. This effect is visible in Fig. 5.10, where at low mobility, the mismatched-σopt

case has photodepletion at the front side and photofilling at the back side, consistent with excess
CI generation at the front and excess IV generation at the back. Both the matched-σopt and the
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(b)

Figure 5.8: (a) J(V ) curves for devices with parameters of Table 5.2, under X = 1000 suns
illumination, modeled on Ref. [58]. Solid lines show σopt

CI = σopt
IV , as in [58], while dotted lines show

σopt
CI = 5σopt

IV , which causes the CI absorption to be preferentially at the top of the device. Note
the small vertical scale. The mismatched-σopt case is more strongly influenced by the IB mobility
µI , but the effects are relatively small throughout. (b) The short-circuit current Jsc for devices
with varying µI shows that the matched-σopt case is independent of µI when µI is sufficiently large
(≳ 0.1 cm2/Vs), while the mismatched-σopt case again shows a stronger µI-dependence, but note
the small vertical scale.
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(a)

(b)

Figure 5.9: (a) Drift (dashed) and diffusion (solid) currents for each band, at µI = 100 cm2/V/s
and σopt

CI = σopt
IV , with other parameters as in Table 5.2. The IB current density attains its maximum

at the marked point. (b) Maximum IB current density as a function of µI for the matched and
unmatched absorption cross sections, showing the increased importance of jI and thus µI in the
case where local absorptions are mismatched.
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Figure 5.10: IB filling fraction f(x) at the maximum power point with the parameters as in
Table 5.2. With mismatched σopt and low µI , the IB filling fraction changes drastically through
the depth of the device, as the local generation and recombination rates must come into balance;
this balancing increases the local recombination and decreases the total current generation, as seen
in Fig. 5.8b. With matched σopt, internal IB currents balance the absorptions, and f(x) remains
nearly constant.

high-mobility mismatched-σopt cases maintain an approximately uniform IB filling fraction.
These examples together show the utility of Simudo to explore the performance of IB devices

and resolve an assertion made in earlier device models without the benefit of a coupled PDD/optics
solver.

5.5 (Paper) Conclusion

The availability of a device model for intermediate band materials should enable both understand-
ing of this new class of materials and optimization of IB devices. Simudo’s use of the FEM and its
methods for overcoming catastrophic cancellation may also prove useful in standard semiconductor
device simulation. Simudo has been validated against Synopsys Sentaurus for standard semicon-
ductor devices and shown to converge more rapidly with mesh size. This self-consistent solution
of the Poisson/drift-diffusion and optical propagation equations provides a platform for studying a
wide range of optoelectronic materials and devices, including solar cells and photodetectors, with
tools to enable extensibility to arbitrary generation and recombination models, thermal effects,
and more. The near-term roadmap for Simudo includes explicit heterojunction support and non-
local tunneling, which will be available with future releases at github.com/simudo/simudo. We
hope that the free and open source nature of this software will enable further development of IB
materials and device simulation more broadly.
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Chapter 6

Record of failures

Note. This section is original content for the thesis.

For the root cause of all the failures, please see my birth certificate attached as appendix C.
The coupled nonlinear PDE’s described in the previous chapters are frequently challenging to

solve. Along the way to the solution presented in chapter 5, we tried a number of other (sometimes
simpler) formulations of the problem. We record here those failed attempts and a brief discussion
of why they failed. Hopefully our suffering can be educational (and if not, at the very least
entertaining).

6.1 Standard density method failure – oscillations

The most direct way of applying the finite element method is to simply substitute Eq. 5.1a into
Eq. 5.1b and discretize the resulting equation

j⃗k =

drift⏟ ⏞⏞ ⏟
qµkukE⃗−

diffusion⏟ ⏞⏞ ⏟
skqDk∇⃗uk (6.1)

0 =
∂uk
∂t

= −sk
1

q
∇⃗ · j⃗k⏞⏟⏟⏞+gk (6.2)

0 = −sk
1

q
∇⃗ ·
⏟ ⏞⏞ ⏟
(qµkukE⃗ − skqDk∇⃗uk)+gk (6.3)

Multiply by a test function v, integrate
´
Ω
, and voilà. Just solve for uk and E⃗! It’s simple,

straightforward, and it doesn’t work. The author spent more than a few weeks trying and failing
miserably to get the numerical system to converge at all. What we call a drift-diffusion equation is
more generally known as an advection-diffusion-reaction equation. There’s a lot of literature [90,
42, 91] on why the standard CG1 elements numerical approach to these equations is bound to fail
due to spurious oscillations in drift-dominated regions (“high Péclet number”). A highly simplified
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explanation is that FEM functions are usually linear or polynomial as a function of space, while
the advection-diffusion problems can be exponential, so a naive finite element approach would
require a prohibitively fine mesh to tame the small-scale exponential nature of these problems.
Many researchers have described methods to remedy the issue: artificial diffusion [71], upwinding
[92], mixed elements [93], the (modified) finite volume method [90], and many others [94]. Note
that these oscillations are not caused by numerical loss of precision; they would be present even if
we used infinite-precision arithmetic. A better approach is required.

6.2 Density-mixed method failure – catastrophic cancellation

Our next attempt is a mixed method, with the mixed variables being the carrier density uk and
the current j⃗k. On running this model, the resulting carrier density uk looks like what we expect
from the depletion approximation (and matches up with the benchmark result from Sentaurus
reasonably well), but the current is extremely noisy in the regions where the carrier is the majority
carrier (e.g., conduction band electrons in the n-type region). The noise is significant but presents
itself as random oscillations around the correct value at forward bias (e.g., Figure 6.1). However,
the noise completely drowns out the signal at reverse bias as shown in Figure 6.2. We in fact
considered an entire family of solvers at this stage, including some desperate attempts involving
streamline upwind Petrov–Galerkin (SUPG) [95], but the noise would not go away.

We believe this phenomenon is due to catastrophic cancellation in the drift-diffusion equation
(Eq. 5.1a), where the magnitude of the total current is much smaller than the magnitudes of
its drift and diffusion components (which have opposite sign and nearly cancel out inside the
depletion region and part of the majority quasi-neutral region). Figure 2.6 showed a mild example
of catastrophic cancellation where |jC | is “only” 6 orders of magnitude smaller than |jC,drift| and
|jC,diffusion|. With higher doping and (especially) small |Vext| it is easy for the drift and diffusion
components of current to become over 16 orders of magnitude larger than the current itself. In
such a case it is impossible to try to resolve jC since 64-bit IEEE floats can only carry 16 digits of
precision. A better approach is required.

6.3 qfl-mixed method failure – catastrophic cancellation re-

dux

The next attempt is to rephrase the mixed method so that the carrier density is expressed as a
quasi-Fermi level wk instead of carrier concentration uk. This replacement simplifies the drift-
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Figure 6.1: Comparison of currents in a silicon pn junction between the old Simudo density-mixed
method and Synopsys Sentaurus. The diode has symmetric doping NA = ND = 1018 cm−3 and
has a forward bias Vext = 0.4 V applied to it. Significant numerical noise can be seen throughout
both of the majority regions. The two simulators agree well on the minority currents outside of
the depletion region.

(a) (b)

1000✕ zoom

Figure 6.2: Reverse bias variant of Figure 6.1 at Vext = −0.6 V, showing the (a) magnitude of
the noise and (b) a zoomed-in version showing the correct current densities (from Sentaurus).
The numerical noise dominates the signal by a factor of 1000 in the majority regions, making it
impossible to resolve the currents there. Sentaurus also has some numerical noise in the same
regions.

97



diffusion equation (and resulting weak form) so that it only has one term

j⃗k = µkuk ∇⃗wk, (6.4)

as discussed in Section 5.2.1, and results in the weak forms shown in 5.3.3.1.
Unfortunately, noise is still present in the majority currents (as seen in Figure 5.3), albeit to a

much lesser extent than in previous method. The reason is once again catastrophic cancellation,
this time because wk is extremely flat for the majority carrier. Computing the derivative ∇wk in
Eq. 5.5 numerically involves evaluating something like

∇wk ≈
wk(x+ h)− wk(x)

h
(6.5)

The subtraction can suffer from catastrophic cancellation if wk(x+ h) and wk(x) are too close
together. Typically h is (approximately) the cell size, so we would expect to run into issues if
|wk|≫ hj⃗k/(µkuk) = h∇⃗wk. Amusingly, the catastrophic cancellation happens because the mesh
is not coarse enough, the exact opposite of Section 6.1. The minimum cell size h required to
resolve wk is shown in Figure 6.3, where it appears to be two orders of magnitude larger than the
size of the entire device. The typical solution here would be to use higher precision floats, but
we’re already using 64-bit floats and going to 128-bit would incur a massive performance hit. And
more importantly, the transition would require a massive development effort since 64-bit floats are
hardcoded inside FEniCS. A better approach is required.

6.4 Delta-qfl-mixed method success

The story has a happy ending, as we found a workaround by representing wk as a sum of two
variables wk0+δwk where wk0 is a cell-wise average (and is computed before each Newton iteration)
and δwk is an offset away from wk0 and is solved for as an FEM trial function. This method is
fully described in section 5.3.3.2, and is the method currently used inside Simudo itself. This is
the end of our journey, and the beginning of a new era in intermediate band device modeling.
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Figure 6.3: Minimum cell size required to accurately resolve ∇wk throughout a pn junction,
assuming that wk is converged to 6 digits of precision. The device’s full parameters are described
in Figure 2.8. Since the device’s overall width is 4µm and a uniform Simudo mesh has on the order
of 100 nodes, the cell size is h ≈ 0.04 µm. However, the plot shows that resolving the majority
currents accurately using Eq. 5.5 would require a minimum cell size of hmin ≳ 30 µm, which is
impossible.
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Chapter 7

Conclusion

Simudo fills an important gap in semiconductor device simulation: it is extensible, supports both
standard semiconductor and IB materials (with their unique effects), and it is available as free and
open source software. Its immediate value is apparent, as it has been used to investigate the effect
of IB mobility inside devices with mismatched sub-bandgap absorptions [28] and to validate and
refine the IB material figure of merit [25].

Outside the IB device modeling niche, Simudo is competitive even in the more crowded space
of standard semiconductor simulators. Simudo beat Sentaurus on a reasonable benchmark (sec-
tion 5.3.5), and has better convergence with respect to the number of mesh points (figure 5.4).

An indispensable part of research is the realization that there are many more questions to be
asked (and answers to be questioned). For instance, Simudo currently relies on the Boltzmann
approximation for carrier densities. However, the approximation cannot be used for semiconductors
with degenerate bands. Overcoming this limitation is a planned feature for the future, using
efficient approximations to the Fermi-Dirac integral for parabolic bands [36, 96] to implement the
relationship between uk and wk. Moreover, Simudo itself could use some more features such as tools
for 2D/3D modelling and a graphical user interface. Other planned developments include writing
a proper regression test suite (to quickly check that future code changes do not worsen Simudo’s
accuracy on existing problems), implementing reflecting and scattering boundary conditions for
optics, and multiprocessing support via MPI.
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Appendix A

Miscellaneous proofs

Lemma 2. The function f : (0,∞)→ R defined by

f(r) =
1√︁

1 + 1/r
+

1√
1 + r

(A.1)

attains its maximum at r = 1.

Proof. The function is smooth, so we look for extremal points by setting its derivative to zero.

0 = ∂rf(r) (A.2)

0 = ∂r

[︃
1√

1 + r−1
+

1√
1 + r

]︃
(A.3)

0 =
−1
2
(1 + r−1)−3/2 · −r−2 +

−1
2
(1 + r)−3/2 (A.4)

0 = −(1 + r)−3/2r1/2 + (1 + r)−3/2 (A.5)

0 = −r1/2 + 1 (A.6)

The function takes value
√
2 at r = 1, limr→∞ f(r) = 1, and f(r) = f(r−1). Therefore r = 1 is

the only extremum, and it is a maximum.
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Appendix B

Jump operator

Within the context of the finite element method, the jump operator is defined on cell boundaries,
and it takes the difference in an expression between two cells. For example, consider a 1D context
with two cells at x ∈ [0, 1] and x ∈ [1, 2], and consider a discontinuous finite element function
defined on the two cells as

f(x) =

⎧⎨⎩20 0 ≤ x ≤ 1

50 1 ≤ x ≤ 2

which could be a DG(0) function for example. The jump operator [·] is defined only at the interface
of the two cells (x = 1). The jump operator applied on f(x) at x = 1 is

[f ]

⃓⃓⃓⃓
x=1

= lim
h→1+

f(x)− lim
h→1−

f(x)

= 50− 20

= 30

The jump operator can be applied to any discontinuous expression, not only functions in the
finite element space (such as DG or BDM). For example,

[ef(x)]

⃓⃓⃓⃓
x=1

= lim
h→1+

ef(x) − lim
h→1−

ef(x)

= e50 − e20
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